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PREFACE

Representation theory has very strong interplay with group structure.
This is particularly true for finite solvable groups G, because their chief
factors are irreducible modules for G over fields of prime order. In this
monograph, we present some topics and problems arising in the representa-
tion theory of solvable groups. In particular, we study modules over finite

fields, yet give applications to ordinary and Brauer characters of solvable

groups.

It is not our intent to develop representation theory from scratch, but
rather to discuss techniques and problems in current research. On the other
hand, we wish that the:manuscript be accessible to a reasonably wide group
of people, including advanced gfaduate students, working in group theory.

We refer to two basic references, namely:

[Hu] B. Huppert, “Eundliche Gruppen I” and
[Is] I. M. Isaacs, “Character Theory of Finite Groups”.

We believe that readers fairly familiar with these texts should have little
problem reading the manuscript. We do also quote some material from the
first chapter appearing in the sequel to [Hu], namely Chapter VII of “Finite
Groups II” by B. Huppert and N. Blackburn [HB]. That chapter is entitled
“Elements of General Representation Theory”. Many of the results from
these sources for which we have frequent use are presented (generally without
proof) in Chapter 0, “Preliminaries”. Since we present some applications
to block theory, we state and/or prove several related results in Chapter 0.
To this end, we have quoted some material here from “Representations of
Finite Groups”, by H. Nagao and Y. Tsushima [NT], although many of the

quoted results also appear in the sketchy introduction to block theory that
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appears in the last chapter of [Is]. In our preliminary chapter, we do include

proofs of Fong reduction and the Fong—Swan Theorem.

Of course, module (a.n.d character) induction is a powerful tool in repre-
sentation theory, particularly when paired with Clifford’s Theorem. Conse-
quently, we need to sﬁudy “quasi-primitive” linear groups, where those tech-
niques do not apply. For solvable groups, the condition of quasi-primitivity

imposes strong restrictions on the normal structure of the group. We study

this extensively in Section 1, without restriction on the underlying field. An

important class of solvable (quasi-primitive) linear groups over finite fields
are the “semi-linear” groups. We study these in Section 2 along with con-
ditions that force a linear group to indeed be a semi-linear group. Section
3 gives bounds for orders and derived lengths of solvable linear groups and

permutation groups.

Much of Chapters II and III (Sections 4 through 11} deals with orbits
of solvable linear groups or, as in Section 5, orbits of permutation groups.
Of course, for solvable groups, orbit sizes of linear groups and those of

permutation groups are closely related. This becomes clear in Section 6,

.where we give a new proof of Huppert’s classification of doubly transitive

solvable permutation groups. Many of the questions about orbit sizes of

linear groups are related to the existence (or non-existence) of “regular”

orbits. Our emphasis here again is on finite fields, because otherwise regular.

orbits always exist. The main feature of Chapter III, which is critical for,

Chapters IV and V| is the study of linear groups with “Sylow centralizers”.

Chapters IV and V deal with ordinary and modular characters and their
degrees. In Section 12, we prove Brauer’s height-zero conjecture for solvable
G, using material from Sections 5, 6, 9 and 10. In Section 15, we give a
charaActer—counting argument and use it to prove the Alperin~-McKay con-
jecture for p-solvable groupé. In Section 16, we discuss the derived length
and the number of character degrees of a solvable group. This partially re-
lies on a theorem of Berger, presented in Section 8, which unlike other orbit

theorems gives the existence of small orbits.

ix

The final chapter introduces the theory of “m-special” characters and
gives some applications thereof. Also included is Isaacs’ vanonical lift of

Brauer characters (for p > 2).

Olaf Manz , T. R. Wolf
Heidelberg and Frankfurt Athens, Ohio

Germany USA
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Chapter 0
PRELIMINARIES

For this manuscript, all groups will be assumed finite. If G is a group
and F an (arbitrary) field, an F[G]-module V will mean that V is a right
F|G]-module and that V is finite dimensional over F. Recall that V is
completely reductble if V is the sum of simple F[G]-modules. In this case, V
is actually a direct sum of simple modules. Indeed, if V' # 0 is completely
reducible, then V = V1 @ --- @ Vi where V; # 0 is the direct sum of simple
isomorphic F|[G]-modules and if W; and W; are simple submodules of V; and
V; (resp.), then W; 2 W; (as F[G]-modules) if and only if i = j. Then V;
are called the homogeneous components of V and are unique (not merely up
to isomorphism, but the V; are unique submodules). Now V; = U &--- @ U,
for isomorphic F[G]-modules U;. While ¢ is uniqu'e, the U; are unique only

up to isomorphism.

Because solvable groups have an abundance of normal subgroups, we

begin by recalling Clifford’s Theorem:

0.1 Theorem. Suppose that V is an irreducible F[G)-module and N 4 G.
Then

(a) Vu is completely reducible and so Viy = Vi @--- @ Vi where the V;

are the homogeneous components of Vi;

(b) G/N transitively permutes the V; by right multiplication;

(¢) If Wi and W; are irreducible N-submodules of V; and V; (resp.),
then dim(W;) = dim(W;) for all 1, j; and

(d) I = {g € G| Vig =V} is the inertia grotp in G of Vy, then V; is

an irreducible I-rnocule and V =2 Vla (induced from I to G).

e e e
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Proof. This is Hauptsatz V, 17.3 of [Hu]. a

0.2 Proposition. Suppose that V is an irreducible F|G)-module, N 4 G
and Vi is not homogeneous.

(i) If C 9 G is maximal such that V¢ is not homogeneaus, then G/C
faithfully and primitively permutes the homogeneous components of
Ve.

(ii) There exists N < D < G such that Vp = W, @ --- @ W, for D-
invariant W; that are faithfully and primitively permuted by G/D
(s > 1). Furthermore, whenever N < L < D with L < G, Vi is not

homogeneous and each W; is a sum of homogeneous components of

VL.

Proof. Write Vy = V; @ -+ @ V; where the V; are the homogeneous com-

ponents of V. Suppose that N < M A Gand W =V, @ --- @V, is

M-invariant. We claim that W is a direct sum of homogeneous components
of Vir. To see this, let X and ¥ be isomorphic irreducible M-submodules of
V with X <W. Now Xy and Yy have isomorphic irreducible submodules
Xo and Yj (resp.). Since the V; are homogeneous components of Vy, X,
and Yp are contained in the same V;. Thus Yo < W and Y N W # 0. Then
Y < W, establishing the claim.

(i) Now G transitively permutés the homogeneous components of V. Let
K be the kernel of this permutation action, so that C < K < G. Applying
the last paragraph to V¢, each homogeneous component of V¢ is a direct
sum of homogeneous components of V. By maximality of C, C = K,
proving that G/C acts faithfully on the homogeneous components of V.

This action is primitive by the first paragraph and choice of C.

(ii) Since G transitively permutes Q = {V4,...,V;}, we may write Q =
AyU--UA, with s> 1and G primitively permuting {A;,...,A,}. In
other words, Vy = W) ®---®W, where s > 1 and each W; is a sum of some

homogeneous components of Vi and such that G primitively permutes the

Wi. Lel D be thie kernel of tle p(—;rm'utatiou action of G on {Wy,..., W,}.
Then Vp = W1 @ - - @ W, for D-invariant W, that are faithfully and primi-
tively permuted by G/D. Furthermore, whenever N < L < D with L < G,
each (W;) is a sum of homogeneous components of Vi, by the first para-

graph. Since s > 1, V is not homogeneous. O

The structure of solvable primitive permutation groups is well-known
and discussed below in Section 2. In particular, a nilpotent and primitive

permutation group has prime order (see [Hu, Satz II, 3.2]).

0.3 Corollary. Suppose that V is an irreducible G-module, N < G and
VN is not homogeneous. If G/N is nilpotent, there exists N < C < G with
|G : C| = p, a prime such that Vo = V1 @ --- @ V), for homogeneous compo-
nents V; of V.

0.4 Proposition. Suppose that V is an irreducible F[G]-module and that
K is an extension field of F.

(i) If char (F) # 0, then V ® x K = W, @ - @& W, for non-isomorphic
irreducible K[G]-modules W;.

(i) If K is a Galois extension of F, then V@ K Ze(Vi @ --- @ V;) for
a positive integer e and non-isomorphic irreducible K[G]-modules
Vi. Furthermore the V; are afforded by representations X; that are
conjugate under Gal (K : F). Indeed {X,,...,X,} is a single orbit

under Gal (K 1 F).

Proof. See [HB, Theorems VII, 1.15 and VII, 1.18 (b)]. The K[G]-module
V ®# K is denoted by Vi in [HB] and by VX in [Is]. O

Suppose V is a faithful irreducible F[G]-module for some field F. If K is
an extension field of F, then G has a faithful irreducible K[G]-module W by
Proposition 0.4. By choosing K to be algebraically closed, G has a faithful

absolutely irreducible representation X : G — M,(K) for some n, Then the

—



i“ B PRELIMINARIES Chap. 0
dmcentralizc—:r in M,(K) of X(G) consists of scalar matrices. If G is abelian,
r then G must be cyclic and n = 1. We thus have the following well-known
a_mresult which is of particular importance to the structure of quasi-primitive
linear groups.

!'1

L’O.S Lemma. If an abelian group A has a faithful irreducible module W
« (over an arbitrary field F), then A is cyclic. If furthermore W is absolutely

M irreducible, then dimx(W) = 1.

i The following lemma is sometimes referred to as Fitting’s lemma, al-
Mthough [Hu] credits Zassenhaus.

fi :

0.6 Lemma. Suppose G acts on an abelian group A by automorphisms

. and (|G|,|A]) = 1. Then A = [G, A] x C4(G).

)
[+

Proof. See [Hu, Satz III, 13.4]. : O

We use Irr (@) to denote the set of the ordinary (i.e. complex) irreducible
| haracters of the group G and let char (G) denote the set of all ordinary
“tharacters of G. Of course, char (G) C cf(G), the set of class functions of
, 7, and we let [x, 8] denote the inner product of x, 6 € cf(G). For N < G
‘Lmd 6 € Irr (N), we let Irr (G|6) = {x € Irr (G) I [xn~,0] # 0}. By Frobenius

reciprocity, Irr (G|0) is the set of irreducible constituents of the induced

haracter 6°.

i
1

s

Let F be a field of characteristic p such that F contains a |G|-th root of
L\nity. Then F is a splitting field for all subgroups of G (i.e. every irreducible
F-representation of every subgroup of G is absolutely irreducible). It is cus-
 omary to choose F so that F is a quotient ring of an integral domain of

haracteristic zero. This is often done via p-modular systems, as in Section

3.6 of [NT]. A slightly different approach is given in Chapter 15 of [Is]. We

hould point out here that Chaptef 15 of [Is] is only intended as an introduc-

“Tion to modular theory and as such is not complete. Recall that each g€EG

Chap. 0 PRELIMINARIES . 5

has a unique factorization g = g,g,» = gp'gp where g, is a p-element and g, -

is p-regular (i.e. pt o(g;)). Each'irreducible F-character x of G' can then be
lifted to a complex-valued function ¢, defined on p-regular elements of G.

Now ¢ is called an irreducible Brauer character of G, the set of which is de-

noted IBr,(G). (Actually there are some choices involved in this procedure,

but it is usual to do this simultaneously for &ll irreducible representations
of all subgroups of G to avoid complications). Because x(9) = x(gp7) for
all g € G, defining the lift ¢ € IBr,(G) only on p-regular elements loses
no information and avoids technical difficulties. Now there is a 1-1 corre-
spondence between IBr,(G) and the irreducible F-representations. Indeed,
if ¢ € IBr,(G) corresponds to the F-representation afforded by an F[G]-
module V, then (1) = dim(V). Also IBr,(G) is linearly independent over
C and |IBr,(G)| is the number of p-regular classes of G..

Let N <4 G and4 € IBr,(N). We write IBr,(Glp) = {8 € IBr,(G)| pisa

~ constituent of Bx}. Now the induced character ¢ is a positive Z-linear sum

> ajp; of irreducible Brauer characters p4, even though the corresponding
induced module may not be completely reducible. By Nakayama reciprocity
[HB, Theorem VII, 4.13 (a)] and Clifford’s Theorem 0.1, each x € Ii3r,,(G|(p)
is a constituent of “. When G/N 1is a p'-group, we get the converse and

more.

0.7 Proposition. Suppose that G/N is a p'-group, that g.o € IBr,(N) and
6 € 1Br,(G). Then the multiplicity of ¢ in 8y equals the multiplicity of 6
G
m @S,

Proof. Let F be a splitting field for N and G in characteristic p. Let ¥
be an (irreducible) F(G)-module affording ¢, and W an (irreducible) F(N)-
module affording . Now Vy is completely reducible by Clifford’s Theorem.
Since G/N is a p’-group and W an irreducible N-module, indeed W€ is
complétely reducible (see [HB, VII, 9.4]). With both-Vyy and W completely
reducible and F a splitting field for N and G, it follows from Nakayama
reciprocity ([HB, VII, 4.13]) that the multiplicity of W as a composition

factor of Vi equals the multiplicity of V as a composition factor of WE.

T T
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The proposition now follows. . a

%
Y

0.8 Theorem. Let N 4G and ¢ € 1Br,(N). If I = Ig(y), then ¢ — ¢
is a bijection from IBr,(I]p) onto IBr,(Gle).

Proof. Tor ordinary characters, this is Theorem 6.11 of [Is]. More generally,
a similar proof works here. Let x € IBr,(G|y). Clifford’s Theorem 0.1 (d,
a) shows that y = p© for some p € IBr,(I|¢) and that x; = g+ A for a

(possibly zero) Brauer character A of I with no irreducible constituent of A

lying in IBr,(I]e).

Let ¢ € IBr,(I|p). By Nakayama reciprocity (HB, VII, 4.13 (a)], there ex-
ists v € IBr,(G) such that v is a constituent of y;. But then v € IBr,(G|y)
. and the last paragraph implies that ¢ is the unique irreducible constituent
of v lying in IBr,(Ilp) and $pY =~. So 9 — % is a 1-1 and onto map
from IBry(I|e) onto IBr,(Gle). 0O

" Theorem 0.8 applies to ordinary characters too; just choose p so that
rtIGl.

0.9 Lemma. Suppose that N < G, ¢ € IBr,(G) and ¢y is irreducible.
Then o — ayp is a one-to-one map from IBr,(G/N) onto IBr,(Glen).

Proof. By [HB, Theorem VII, 9.12 (b,c)], note ap € IBr,(G) for each
a €IBr,(G/N) and the mapping o — «p is one-to-one. Let p€IBr,(Glpn).
It suffices to show p = B¢ for some f € IBr,(G/N). We mimic the proof of
[HB, Corollary VII, 9.13].

‘Let F be an algebraically closed field of characteristic p and V an irre-
ducible F[G}-module affording ¢. Since y € IBr,(G|pn), Nakayama reci-
procity implies that u is a constituent of pn© (see comments preceding

Proposition 0.7). Thus g is afforded by a composition factor of Vy& =
V @z F(G[N) (see [HB, VI, 4.15(b)]). K0 = Up < Uy-++ < Uy, =

oliage v

F(G/N) is a composition series of the F(G)-module F(G/N), then for each ¢
V@rU;/V@rUimy = VRU; /Ui is irreducible, again by [HB, VII, 9.12(b)].
Thus, by the Jordan-Holder theorem, y is afforded by V @7 W for an irre-
ducible F(G/N)-module W. So ju = By for some § € IBr,(G/N). 0

In presenting Gallagher’s Theorem (Lemma 0.9 for ordinary characters),
Issacs [Is, Theorem 6.16] first proves the following stronger re?sult under the

assumption ‘that ¢ is G-invariant.

0.10 Lemma. Suppose that N < G, that ¢,8 € Trr(N) and 6 = xn for
some x € Irr(G). Assume also that @8 € Irr(N) and Ig(p) = Ig(p8). Then
o — o is a bijection from Irr(Gly) onto Irr(G|p8).

Proof. Let I = Ig(p) = Ig(wh). For § € char(I), observe that (6x1)¢ =
69 (see [Hu, V, 16.8] or [Is, Ex 5.3]). Now Theorem 6.16 of (Is] yields
that & — ay; is a bijection from Irr(Ilp) onto Irr(I]pd). Employing the
Clifford correspondence (Theorem 0.8), o — (axs)% = a%y is a bijection
from Irr(I]p) onto Irr(Glef). Since oo — a% is a bijection from Irr(I}p)
onto Irr(Gp), the lemma follows. 0

To employ the above, we would like conditions sufficient to extend char-
acters. Theorem 0.13 is quite useful, in part due to uniqueness (e.g. see

Lemma 0.18).

0.11 Proposition. Suppose that G/N is cyclic and ¢ € IBr,(N) is G-
invariant. Then ¢ = By for some f € IBr,(G).

Proof. See [HB, Theorem VII, 9.9]. 0

0.12 Proposition. Suppose N 4 G, § € Irr(N) and 8 extends to P when-
ever P/N is a Sylow subgroup of G/N. Then § extends to G.

Proof. See [Is, Corollary 11.31]. ‘ 0

i
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Let p € char(G) and let X: G — GL(n,C) be a representation of G
affording p. For ¢ € G, let det(p)(g9) = det(X(g)). This is independent
of the choice of X and det(y) is a linear character of G. We let o{u) be
the order of the linear character det(u) of G. The following theorem can
often be combined with Proposition 0.12 to extend characters. Note that
det(¢ + 1) = det(p) det(u), and det(pp) = (det p)*1) det ()M,

0.13 Theorem. Suppose that N 4 G, § € Irr (N) is G-invariant and

(0(0)6(1), |IG/N|) = 1. There exists a unique extension x € Irr(G) of 8
satisfying (o(x), |G : N|) = 1. Also, o(x) = o(6).

Proof. See [Is, Corollary 8.16]. » |

In Theorem 0.13, we call x the canonical extension of 8 to G. The unique-

ness in Theorem 0.13 is quite useful, often for inductive purposes. For exam-

ple, we use it to prove the Fong~Swan Theorems. It is also used in the proof

of Lemma 0.18, which guarantees the existence of characters of p’-degree
and is helpful in Fong reduction. First however, we look at “ Glauberman’s

Lemina”, Glauberman correspondence, and some consequences thereof.

0.14 Lemma (Glauberman). Suppose that A acts on G by automor-
phisms and (JA|,|G|) = 1. Assume that both A and G act on a set £ and
that G acts transitively on Q. In addition, suppose that (wg)a = (wa)g® for
alla€ A, g€ G, andw € Q. Then

(a) A has fixed points in §); and
(b) Cc(A) acts transitively on the set of fixed points of A in §2.

Proof. Sce [Is, Lemmas 13.8 and 13.9]. Note that the hypothesis (wg)a =
(wa)g® is equivalent to the condition that the semi-direct product GA acts

on Q (consistently with the actions of G and A). O

If a group A acts on G via automorphisms, we let Irr 4(G) = {x € Irr (G) I
x*=xforall a€ A}

Cliap. 0 PRELIMINARLIES 9

0.15 Theorem. Whenever A acts on G by automorphisms with (|A],|G)=1
and A solvable, there is a uniquely defined bijection p(G,A) : Irr p(G) —
Irr (C') where C' = Cg(A) such that

(i) If A is a p-group and x € Irr4(G), then xp(G, A) is the unique
B € Irr (C) satisfying [x ¢, ] # 0 (mod p).
(i) FT < A, then p(G, A) = p(G,T) p(Ca(T), A/T).

Proof. See [Is, Theorem 13.1]. - O

By “uniquely defined” above, we mean there is only ore such map (in-
deed, else (ii) would be meaningless) and this map is independent of choices
made in the algorithm implied by the theorem. This map is known as the
Glauberman correspondence. If A acts on G with (|A|,|G]) = 1, but A
not -solvable, then |G| is odd. Isaacs [Is 2] has exhibited a “uniquely de-
fined” correspondence whenever 4 acts on G, (|4],|G|) = 1, and |G| is odd.
Moreover, this agrees with the Glauberman correspondence when both are
defined [Wo 2]. The combined map is thus referred as the Glauberman-
Isaacs correspondence. The following appears in [Is, Theorem 13.29] and

has a couple of uses in this section alone.

0.16 Lemma. Suppose A acts on G with A solvable and (|A],|G]) = 1.
Suppose N < G is A-invariant, x € Irr4(G) and 6 € Irr4(N). Then

[xn, 0] # 0 if and only if [xp(G, A)nnc, 0p(N, A)] # 0.

Much of the following lemma is a consequence of Glauberman’s lemma
above. In fact, no more is required for G solvable or for parts (a), (b) and (c)
in the general case. For G non-solvable, parts (d), (e) and (f) also employ
the Glauberman correspondence and more. All parts appear somewhere
(possibly as exercises) in Chapter 13 of [Is]. Due to its importance here

(particularly when G is solvable), we give a sketch.

0.17 Lemma. Suppose that N < G < T with (| : G|,|G : N|) = 1 and
N QT. Let H/N < T/N with GNH = N and T = GH. Supposec that
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0 € Irr (G) is T-invariant and ¢ € Irr (N) is H-invariant. Then

(a) On has an H-invariant irreducible constituent a;
(b) If Co/n(H/N) =1, then « is unique;
(c) If Co/n(H/N) = G/N, then every irreducible constituent of 8 is

H-invariant;
(d) ¢ has a D-invariant irreducible constituent 7;
(e) If Co/n(H/N) =1, then n is unique; and
(f) If Cq/n(H/N) = G/N, then every irreducible constituent of 0% is

T-invariant.

Proof. (a, b, ¢). By Clifford’s Theorem, G/N transitively permutes the

..set X of irreducible constituents of 8. Also H/N permutes X and acts on

G/N. Since (|H/N|,|G/N|) = 1, Glauberman’s Lemma 0.14 applies: some

‘element of X is H/N invariant and Cg/N(H/N) transitively permutes the
H-invariant elements of X. Parts (a), (b) and (¢) follow.

(d, e, f). Arguing by induction on |G/N| = IT' : H| we may assume

- without loss of generality that G/N is a chief factor of T (note, for part (e),
~ part (a) is employed along with the inductive hypothesis). Let I = Ip(yp), so

that H < I‘ STand I'=(ING)H. Now ING = Ig(p) is H-invariant. Also
£ — €C gives a bijecti011 from Irr (I N Gp) onto Irr (Gle) and furthermore
¢ is H-invariant if and only if £¥ is H-invariant. The result follows by
induction should ING < G. Thus G < T and ¢ is [-invariant.

First suppose that G/N is abelian. The group Irr (G/N) of linear char-

“acters acts on Irr (G|p) by multiplication and this action is transitive (see
_.:[Is, Exercise 6.2]). Now I'/G = H/N acts on both Irr (G/N) and Irr (Gle).
. ‘Here Glauberman’s Lemma 0.14 yields (d), (e) and ().

Finally we may assume that G/N is non-abelian and thus non-solvable.

‘ _Since I (v) =T, we may in fact assume that N < Z(I") (see [Is, Theorem
‘ 11.28]). Then there exists Z'< N and Gy, N, < T such that G = Gy x 2,
N = Ny x Z and (|[H/N|, |G,|) = 1. We may write % = 1 x A (uniquely)
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with ¢; € Irr (V) and A € Irr (Z). Also f — f\ defines a bijection from
Irr (G ley) onto Irr (Glep). Since Z; < Z(G), this map commutes with H.
Without loss of generality A =1z and Z = 1.

We now have that (|I': G|, |G]) = 1. Choose S < H with I' = GS and
1=GnS. Of course n € Irr (G) is H-invariant if and only if it is S-invariant
and Cg N(H/N) = Cgn(S). Since G/N is not solvable, the Odd-order
Theorem implies that S is solvable. Setting C' = Cg(S), the Glauberman
correspondences apply: both pg : Irrs(G) — Irr (C) and py : Irrs(N) —
Irx‘(Cﬂ N) are bijections. Lét p = pn, and x € Ifrs(G). By Lemma 0.13,
[xn:#] # 0 <= [(xpc)nnc, 1] # 0. Hence |lrrs(Gly)| = |Trr (Clp)|. # 0.
This proves (d). If Cgyn(S) =1, then C < N and NNC = N. Then
|Irrs(G|e)| = Hrr (C|p)| = 1. This proves (f). Finally, we may assume for
(e) that S centralizes G/N and hence G. Part (¢) is then trivial. O

We combine the extendability Theorem 0.13 with Glauberman correspon-
dence for the next lemma which has numerous uses. For example, it can be
used to show that when G is p-solvable and ¢ € Irr (O, (G)) is G-invariant,
then the unique p-block covering {¢} is indeed a block of maximal defect
(see Theorem 0.28 below).

0.18 Lemma. Suppose that G/N is p-solvable and ¢ € Irr (N). Assume
pto(p) (1) and pt |G : Ig(p)|- Then there exists x € Irr(G|p) such that

ptx(1).

Proof. We argue by induction on |G : N|. For ¢ € Irr(I5(p)), we have
p14(1) if and only if p { (1) because p 1 |G : I(y)|. Employing Clifford’s

Theorem and the inductive hypothesis, we can assume that ¢ is G-invariant.

Let M/N be a chief factor of G. If M /N is a p-group, Theorem 0.13 shows
there exists a unique extension 8 € Irr (M) of ¢ satisfying p { 0(6’). Since ¢
is G-invariant, 8 is also G-invariant by uniqueness. Certainly p { (1) and
the inductive hypothesis ensures the existence of a € Irr (G|6) such that

p 1 a(l). Since a € Iir (Glyp), the result follows in this case. So we may




i
i_assumc that A/N is a p'-group.

" Let P € Syl,(G). By Lemma 0.17 (d), there exists y € Irr (M|p) such

wthat g is P-invariant. In particular, p { |G : Ig(p)|. Also p { (1) because
ptIM : N|p(1). Now jup is asum @+ -+, of (not necessarily distinct)

f]

‘ @i € Irr (N) that are M-conjugate to ¢. Hence o(p;) = o(¢) is a p'-number

“for all .. Now

I (det )y = det(pn) = H det(p;).

| i=1

Thus (det )y has p’-order as a linear character of N. Since p{ |M : NJ,

i indeed p f o(u). Now we can apply the inductive hypothesis to conclude

i-the existence of y € Irr (G|p) such that p f x(1). The proof is complete as
x € Irr (Gly). . O

The following well-known lemma appeared as “Lemma 1.2.3” of the im-

i portant Hall-Higman paper [HH]. It appears in [HB] as Lemnma IX, 1.3.
—Recall G is m-separable (for a set of primes =) if it has a normal series,
where each factor group is a m-group or 7’-group. For completeness, we
mention that G is m-solvable if G has a normal series with each factor group
“either a m'-group or solvable 7-group. Of course, p-separability is equiv-
] alent to p-solvability. By the Odd-order Theorem, G m-separable implies
L_that G is m-solvable or 7'-solvable. When @ is m-separable, the analogues of
the Sylow theorems (existence, containment, and conjugacy) hold for Hall

r-subgroups.

. 0.19 Lemma. If G is w-separable, then Cg(Ox »(G)/0(G)C O, .(G).
{ The following well-known result will be used repeatedly, often without
L‘eference. A proof is given in [Hu, Satz V, 5.17]. Alternatively, use Clif-
“Tord’s Theorem 0.1, Proposition 0.4, and Lemma 0.5 to reduce to the case
i where |G| = p, F is algebraically closed, and dim#(V) = 1. Then the cor-

Hw‘esp,onding representation X : G — F must be trivial because 1 is the only

p root of unity in F.

e

0.20 Proposition. IV is a completely reducible and faithful F[{G]-module
and char(F) = p, then O,(G) = 1. ‘

Recall cf (G) denotes the set of class functions of G, i.e. the set of complex-
valued functions on G that are constant on conjugacy classes of G. Fix
a prime p and let ¢f°(G) be the set of complex-valued functions defined
on p-regular elements of G that are constant on G-conjugacy classes. For
a € cf(G), we denote.the restriction of a to p-regular elements by ol €
cf%(@). Now Irr (G) and IBr,(G) are bases for the vector spaces ¢f (G) and
cf%(G), respectively (see [Is, Theorems 2.8 and 15.10] or [NT, Theorems
3.6.2 and 3.6.5]). For x € Irr(G), we have that x° is a positive Z-linear
combination of Brauer characters (sec [NT, p. 233] or [Is, Theorem 15.8]),
and it easily follows that each ¢ € IBf,,(G’) is a constituent of 1° for some

¥ € Irr (G). (Actually, more can be said: ¢ is a Z-linear combination of
{X°| x € (G)})

The set IBr,(G) U Irr (G) is a disjoint union of p-blocks of G. This
is often done by decomposing the group algebra F[G] (for a sufficiently
large field F of characteristic p) into a direct sum @ I; of indecomposable
two-sided ideals. Each ideal is then called a block. Each indecomposable
F|G)-module V is associated with a unique I; (determined by VI; # 0).
In such a way the characters of G are partitioned into p-blocks (see Section
3.6 of [NT] for more details). The following theorem characterizes blocks

sufficiently for most of our purposes.

For a p-block B of G, we let Irr (B) denote B N Irr (G) and IBr,(B) =
BNIBr,(G). Wealsolet k(B) = |Irr (B)|, k(G) = [Irr (G)|, (B) = |1B1,(B)|
and I(G) = |IBr,(G)|. Also bl(G) denotes the set of p-blocks of G.

0.21 Theorem. Let x, f € Irr (G) and p € IBr,(G). Then
(a) x and f lie in the same p-block of G if and only if there exist
Y1,..., % € It (G) with x = 1 and f = ¥, such that ¢? and

Py have a common irreducible Brauer character as a constituent
(1<i<t—1).
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© (b)) If uis a constituent of x°, then y and p are in the same block of G.

Proof. See [NT, Theorem 3.6.19] or [Is, Theorem 15.27]. O

Theorem 0.21 completely determines the p-blocks of G. This “linking
process” also has an analogue of part (a) for Brauer characters: given ¢,
p € IBr,(G), then ¢ and p lie in the same p-block of G.if and only if there
exist v1,...,7¢ € IBry(G) with ¢ = 71, g = 7, such that +; and 7,41 are
both constituents of some 87, f; € Irr(G), 1 <7 <t — 1. This analogue is

an easy consequence of Theorem 0.21 (a, b).
When p { |G|, Irr (G) = IBr,(G) and the p-blocks of G are singletons.

0.22 Proposition. Suppose that N is a normal p'-subgroup of G and ¢ €
IBry(N). Then Irr (Gle) U IBr,(Gly) is a (disjoint) union of p-blocks of G.

Proof. Suppose that y, ¥ € Irr(G) and that x° and %° have a common
irreducible constituent n € IBr,(G). The irreducible constituents of 5y
are common to both x% = xn and ¥} = ¥n, i.e. xny and Py have a
common irreducible constituent u. By Clifford’s Theorem, the irreducible
constituents of yn and iy coincide (up to multiplicities). If B is the p-
block containing x, then Irr (B) C Irr(Glu). Now also Theorem 0.21 (b)
shows that IBr,(B) C IBr,(G|u), as also pu € IBr,(&N)." This proposition

now follows. O

Let B be a p-block of a p-solvable group G. The first steps of Fong
red@ction are to observe that B covers {¢} for some ¢ € Irr (0, (G)) and
that the Clifford correspondence gives a bijection between a block of ()
and B (see 0.22 and 0.25). Should Ig(p) = G, the next steps are to show
B =TIr (Gltp) UIBr,(Gle) and the defect groups of B are Sylow subgroups
of G (Theorem 0.28). Finally one must give the Brauer correspondence in
the two cases (i) Ig(y) < G and (ii) I¢(p) = G (see Theorem 0.29 and
0.30). When I(;(go) = @, we use Lemma 0.18 to show the defect groups are

[T RPN Lt

Sylow p-subgroups of G.. This appears to be different and a little easier than
what appears in the literature. Also, when Ig(¢) = G, instead of stating
B = Irr (G|e) U IBry(G), many texts construct a block'lg’ of a group G
with a bijection between B and B. This gets to be a little awkward when
one also needs to keep track of the Brauer correspondence. Not that our
proof is much different, rather we find the statement more convenient to use.
It should be evident from 0.29 and 0.30 that there is a strong connection
between the Brauer and Glauberman cbrrespondences. Our proofs of Fong
reduction use just standard results of block theory. Some results of Fong
reduction can be found in [N'T], but not the interconnections with the Brauer
correspondence. The latter we need to do McKay’s conjecture in Section
15. Finally, we do the Fong-Swan Theorem with a proof somewhat different

than what appears in the literature.

0.23 Proposition. Suppose thati € Irr (H) andy € be bl(H). IfH <G
and ¢ € Irr (G), then b € bl(G) (in the sense of Brauer induction), and
$Y € b,

Proof. For x € Irr(G) and C a conjugacy class of G, we let C be the class
sum in C[G] and define w,(C) = %‘%I;C—l € C where ¢ is any element of C.
By definition of induced blocks (see [Is, p. 282] or [NT, p. 320]), it suffices

to show that whenever CN H =C; U.--UC, for classes C; of H, then

wye(C) = Z“”’(C‘)‘ (0.1)

(Actually, it is sufficient to show that these two agree modulo a maximal
ideal of a large énough subring of the ring of algebraic integers. Of course,
(0.1) is stronger.) If CN H 2‘0, then both sides are zero. Without loss of
generality, C N H # § and we let z; € Cy,..., z; € C;. Set z = z,. Observe

S _s
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as desired. : O

- Associated with a p-block B of GG is a G-conjugacy class of p-subgroups

, DofG. Then Dis called a defect group of B, and we say that B has p-defect

‘:v} d if D] = p®. Let p™|||G| (that is p™ is an exact divisor of |G|). For x € B,
there is a unique integer h, called the height of x, such that p™= dth) o (1).
We see that h is non-negative.

—

0.24 Lemma. Let B be a block of G with p-defect d. Let p™|| |G|. Then

L (i) p™ 4| x(1) for all x € Irr (B) U IBr,(B),
(i) p™~ 4 B(1) for some B € Irr(B).

Proof. See [NT, Theorem 5.1.11 (ili) and p. 245] or [Is, Theorem 15.41].
O

r -

Choose x € Irr(B) with height zero and write x° = 3 a,a (a € IBr,(B)).
_ Evaluating both sides at 1, there exists p € IBr,(B) of height zero (with

ptau).

= 0.25 Lemma. Let § € Irr () where K 4 G and K < O, (G) Set I =
Ic(8). Let o, B € Irr (I16) UIBr,(I16). Then

- (i) « and B lie in the same p-block of I if and only % and € lie in the
same p-block of G; '
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(i) If b € bl(I]6), then B := {¢% | @ € b} is a p-block in bl (G|6). Also

B = b% in the sense of Brauer induction;
(iii) If b € b1(I|6), then b and b® have a common defect group; and

(iv) o and € have the same height.

Proof. (i) Assume that «% and € lie in the same p-block B € bl(G|6). To
show that o and f lie in the same p-block of I, we may assume that o and
B are ordinary characters and also that (a®)? and (8Y)° have a common
irreducible constituent p € IBr,(G|6). Writing «® = ), a;0; where au,' >0
and o; € IBr,(I|0); we have that
(OlG O)C' Z a; 0_ Z G

and each af € IBr,(G|6). Thus p = o for some 7. Likewise u = v for
some irreducible constituent iy € IBr,(I|6) of 8°. By the uniqueness in the
Clifford correspondence (Theorem 0.8), o; = -y is a common constituent of
a® and A% Hence o and f lie in the same p-block of I. The proof of the

converse direction is essentially identical.

(ii) That B is a block of G is immediate from part (i). That B = ¢

follows from Proposition 0.23.

(iii) Since B = b, a defect group of b is contained in a defect group of B
([NT, Lemma 5, 3.3] or {Is, Lemma 15.43]). It suffices to show that B and b
have the same defect. Let d be the defect of b, let p* = |I|, and p™ = |G|,.
Then p'~¢ is the largest power of pdividing (1) for all 3 € Irr(b) by
Lemma 0.24. By (i), p
x € Irr (B). Thus B has defect d (again Lemma 0.24). This proves (iii).

¢ is the largest power of p dividing x(1) for all

(iv) Say o € b € bl(I]|9) and b has defect d. Let h be the height of a.
Then p*~4+4)|a(1) and so p™~4+4||a®(1). But «€ € b€ by (i) and bG has
defect d by (iii). Thus h is the height of «© ]

If B is a p-block of G and x €Irr(B), we can write x° =2 p€iBr, (G)Ixe?

o
A

e

T TP
- "



for non-negative ixlﬁegers dyp, called decomposition numbers. The k(B) x
I(B) matrix Dp is the decomposition matriz for B. Similarly, we have a
Dp,
k(G) x I(G) decompositioﬁ matriz for G, namely D =
DB‘
where B,,..., DB, are the p-blocks of G. The matrices Cp := D}J;DB and

C := DTD are Carlan matrices for B and G respectively. Of course,

Cp,
C= . In Lemma 0.25, character induction is not only a

Cp,

height-preserving bijection from b to B, but indeed decomposition numbers
are preserved (the proof is trivial). In particular, b and B have the same de-

composition matrices and Cartan matrices. (Of course, Dy is unique only up

to row permutations and column permutations.) Generally though, Brauer -

induction does not even preserve block size.

Definition. If N < G, b € bl(N) and B € bl (G), then B covers b if there
‘exists ¢ € Irr (D) and x € Irr (B) with [xn,¢] # 0.

0.26 Proposition. Suppose that N 4 G, b € bl(N) and B € bl(G)

covering b.

(i) If ¢ € Irr (b), then there exists ¢ € Irx(B) with [N, p] # 0.

(i) If v € IBrp(b), then there exists o € IBr,(B) such that v is a con-

stituent of o .

Proof. Choose 6 € Irr(b) and x € Irr(B) with [xn,68] # 0. Without
loss"of generality, we may assume that 8° and ¢° have a common irreducible
constituent p € IBr(b). Since [xn, 8] # 0, there exists { € IBr,(B) such that
( is a constituent of ¥® and p is a constituent of (. Now ( is a constituent
of HG by Nakayama reciprocity (see comment preceding Proposition 0.7).
Now ¢° = p+ Y a;v; with a; > 0 and v; € IBr,(NN), it follows that ( is
an \i.rreducible constituent of (¢°)¢ = (»%)? and hence also an irreducible
constituent of 1° for some 1) € Irr (G|p). Note that ) € B because { € B.
This proves (i)’ ,
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To prove (ii), we may choose ¢ € Irr () such that 4 is a constituent of
¢, By (i), choose ¥ € Irr(B) with [1n, ] # 0. Then v is an irreducible
constituent of (¢°)y = (¥n)°. Hence 7 is an irreducible constituent of
on for some irreducible constituent o of °. Since ¥ € B, indeed o €

B. - ‘ ]

0.27 Corollary. Suppose that G/N is a p-group, b € bl,(N) and ¢ €
IBrp(N). Then
(1) Bry(Gly) = {x} for some x,
(ii) A unique block of G covers b.
(1) If ¢ Is G-invariant, then x n = .

Proof. By Nakayama reciprocity ([HB, VII, 4.13]), IBr,(G|p) is not empty.
Suppose «, § € IBr,(Glp). If ¢1,..., ¢, are the distinct G-conjugates of ¢,
then oy = e E:zl piand By = f E; i, for positive integers e and f, by

Clifford’s Theorem. Because G/N is a p-group, every p-regular element of G

liesin N and so @ = an = (e/f)fn = (e/f)f. By the linear independence
of IBr,(G), indeed o = f, proving (i). Part (ii) follows from part (i) and
Proposition 0.26 (ii). "

We prove (iit) by induction on |G/N}. Choose N <M 4G with |G/M|=p.
By (i), IBr,(M|p) = {p} for some p. Since ¢ is G-invariant and y is unique,
¢ also is G-invariant. By Proposition 0.11, p extends to G and so xp = p.
By the inductive hypothesis py = ¢. Thus x extends ¢. ' a

0.28 Theorem. Suppose that G is p-solvable, i = O,/(G) and ¢ € Irr (X)
is G-invariant. Then there is a unique block of G covering {p}, i.e. Irr (G|p)U
IBr,(G|y) is a p-block B of G. Furthermore the Sylow p-subgroups of G are
the defect groups of G.

Proof. As noted in Lemma 0.22, we have that Irr (Gle) U IBr(Glp) is a
union of p-blocks of G. By Lemma 0.18, there exists x € Irr (G|y) such that
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p 1 x(1). Since p { x(1), x is a character of height zero for a block of G
whose defect groups are Sylow subgroups of G (see Lemma 0.24). Thus it

suffices to prove that {(} is covered by a unique block.

We argue by induction on |G : K

. If G/K is a p-group, the result follows
from Corollary 0.27. Hence, by p-solvability, we may choose O, ,(G) <
M < G such that G/M is a p-group or is a p'-group. Now K = O,(M) and
the inductive hypothesis implies there is a unique block by of M covering
{¢} (i.e. by = Irr (M) U IBr,(M|e)). It suffices to show there is a unique
p-block of G covering by. By Corollary 0.27, we may assume that G/M is a
p'-group. By Lemma 0.18, there exists 8 € Irr (bp) such that p{ 6(1).

Let a, A € Irr (G|6). By Proposition 0.26, it suffices to show that o and

D necessarily lie in the same p-block of G. To this end, it suffices to show

that the algebraic integer

is divisible by p whenever C is a conjugacy class of G and g € C; see [NT,
Theorem 3.6.24] or [Is, Definition 15.17]. Since a, # € Irr (G|6) with 6 €
Irr(M), M < G, indeed a(g)/a(1) = B(g)/B(1) for all ¢ € M. Thus we
assume that ¢ ¢ M > O,,(G). By Lemma 0.19, g does not centralize
0,,(G)/0,(G). Thus Cg(g) does not contain a Sylow p-subgroup of G,
ie. p | |C|. Because p{|G : M|6(1), we have that pt (1) B(1). Thus p does

divide |C|(%£(% - —g{%) Hence « and f lie in the same p-block of G. O

Let D be a p-subgroup of G. Brauer’s First Main Theorem states that
b — b9 is a bijection from {b € bl(Ng(D)) | D is a defect group for b}
onto {B € bl(G)|D is a defect group for B}. (See [NT, Theorem 9.2.15]
or [Is, Theorem 15.45] and note [Is, 15.44] should read PC(P) < H <
N(P).) This is called the Brauer correspondence. Given By € bl(G), the

Brauer correspondent of By is uniquely defined up to conjugation: if () is -

a defect group for B, then the Brauer correspondent of B is the unique

bo € bl (Ng(Q)) with defect group Q satisfying b5 = B. The G-conjugates
of () form the set of defect groups of B.
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0.29 Theorem. Let G be p-solvable, K = 0,(G) and P € Syl,(G).
Assume that ¢ € Irr (K) is G-invariant and B € bl(G) covers {¢}. Set
C = Ck(P) and let p = @p(K,P) € Irr(C) be the Glauberman corre-

spondent of ¢. Then there is a unique block b of Ng(P) covering {u}.
Furthermore b = B.

Notes. By Theorem 0.28, B is the unique block of G covering {¢} and P
is a defect group for B. Since P € Syl,(G), in fact P is a defect group of
every block of Ng(P). In particular, b is the Brauer correspondent of B.

Proof. By Theorem 0.15, ¢ = en + pA for a (possibly zero) character A
of C and a p'-integer e. For z € Ng(P), oo = (¢%)¢c = ex® + pA* and
©* = p. Thus g is invariant in Ng(P).

Now O,/(Ng(P)) centralizes P and thus centralizes O, ,(G)/0,(G).
By Lemma 0.19; O, (Ng(P)) € O,,p(G). Thus O (Ng(P)) < 0,(G) N
Cg(P) = Ckg(P) = C. Hence C = 0,(Ng(P)). Since p € Irr (C) is
invariant in Ng(P), Theorem 0.28 shows that there is a unique block 4 of

Ng(P) covering p.

We need to show that b = B. Observe that 5% and b¥Ne{P) yre de-
fined by Brauer’s First Main Theorem. Then (bXNe(P))G = pG (see [NT,
Lemma 5.3.4]). If a € Irr (b¥Ne(P)) then some irreducible constituent
of a® lies in bC by [NT, Lemma 5.3.4]. Since @ is G-invariant, it follows
that bX¥Ne () covers {8} if and only if bC covers {6} (ie. b¢ = B). Now
0,5(G) £ KNg(P) and thus K = O, (KNg(P)). By Theorem 0.28, there
is a unique block of KNg(P) covering {#}. We may thus assume without
loss of generality that G = KNg(P).

Since p € Irr (C) is invariant in Ng(P), there exists ¢ € Trr (b) such that
pt¢(1). Write (¢ = A+ 2 xeler (Glo) @xX for a (possibly zero) character A
of G with [Ag, 6] = 0. Since Irr (B) = Irr (G|6), we have b = B if and only



P Y e 610y @xX(1) by [NT, Lemuna 5.3.4]. But

T =01 Y aylxi) = 00 6]

XElrr (G|6) x€Ir (G|8)

Since G = KNg(P), (%% = Cxnnemy ™ = (™ = (¢(1)/p(1))p¥. Thus

S e = e

x€lre (G16) w(1)

is a p'-number by Theorem 0.15. Hence ¢ = B. O

Let B € bl (G), so that B covers {u} for some y € Irr(O, (G)). Theorem
0.29 describes the Brauer correspondent of B provided u is G-invariant. One
loose end needs to be tied up: namely how the Brauer correspondence works

-when p is not G-invariant, i.e. what is the relationship between the Brauer

correspondence and the correspondence in Lemma. 0.25.

0.30 Corollary. Suppose that X 4 G, pt|K|, and 6 € Irr (K). Suppose -

B € bl(G) covering {8} and I = Ig(#). Choose D < I such that D is a
defect group for B and let b € bl (Ng(D)) be the Brauer correspondent of
‘B. Set C = Cy(D) and p = 6p(K, D). Then

(i) b covers {u};
(ii) 1N Ng(D) = Ing(py(1);

(iii) If By and by are the unique blocks of I and INNg(D) (respectively)
with B§ = B and bONG(D) = b (see 0.25), then b{ = By.

Proof. (ii). By Theorem 0.15, ¢ = ep + pA with A € char(C) and p{e.
If £ € Ng(D), then 6% is D-invariant, C* = C, and 6% = eu® + pA*. So
0*p(K,D) = p®. Since p(K,D) is 1-1, it follows that I¢(8) N Ng(D) =
Ing(py(1)-

(i), (iii). By induction on |G : K|. If, say, D = 1 then B = b and 6§ = Iy

whence the result is trivial. So we may assume that p | |G : K|.

Let b* € bl(INNg(D)) be the Brauer correspondent of B. Then (b*)! =
By and B = B, whence (b*)% = B. Then (b*)N¢(P) ¢ bl(Ng(D)) and
((bﬁ*)NG(D))G = B (see [NT, Lemma 5.3.4]).

Assume that I < G. The inductive hypothesis implies that b* covers {u}.
By (ii) and Theorem 0.28, (6*)Ne(D) has D as a defect group and covers
{1}. Since ((b*)Ne(P)C = B and D is a defect group of (6*)Ne (D) Brauer’s

First Main Theorem implies that (5*)N¢(?) = b. Now the uniqueness of b

yields that by = b*. In this case, namely I < G, the result follows. Thus )

we assume that I = G. Part (iii) is now trivial. We need just show that b

covers {u}.

Let M = O,(G). We may assume that M > K, since otherwise (i)
follows from Theorem 0.29. We may choose « € Irr (M) such that B covers
{a}. By Lemma 0.25, I¢(«) contains a defect group for B. Replacing a by
a G-conjugate, we may assume without loss of generality that D < Ig(«).
Since 6 is G-invariant and Irr (B) C Irr (G|9), « € Irr(M|6). Because M Q4 G
and u = 0p(K, D), ap(M,D) € Irr (Cp(D) [ ) (see Lemma 0.16). By the
inductive hypothesis, b covers {ap(M, D)}. Thus b covers {u}. O

If G is p-solvable and ¢ € IBr,(G), the Fong-Swan Theorem asserts the
existence of x € Irr(G) such that x° = ¢. This is not true without the p-
solvability hypothesis. While indeed x may not be unique, Isaacs has shown
there is a canonically defined set ¥ (G) C Irr (@) such that x — x% is a
bijection from Y (G) onto IBr,(G). We give below a reasonably short proof
of the Fong-Swan theorem. This proof, somewhat in the flavor of Isaacs’,
forgoes uniqueness for the sake of brevity. The next lemma is taken from

|Is 4, Theorem 3.1].
0.31 Lemma. Suppose that G/N is a p'-group, p € Irr (N), ° € IBr,(N)
and Ig(u) = Ig(p®). Then x — x° defines a bijection from Irr (G|u) onto

IBr,(G|u®).

Proof. We argue by induction on |G/N| and let I = Ig(p) = Ig(u®). If
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I < @, the inductive hyp(')thesis implies that 1 +— % is a bijection from
Irr (I|p) onto IBr,(I|x®). The Clifford correspondence then implies that
¥+ () from Irr (I]p) onto IBr,(G|i®). But 3 + ¢ is a bijection from
Irr (I]p) onto Irr (Glp) and (%) = (1°)¢. The result follows in this case
when I < G. We thus assume that p and p° are G-invariant. |

Let X = Irr(G|u) and Y = IBr,(G|u?). Write p% = Do yex @xX, each
ay > 0, and p°¢ = 2 pey Do, each b, > 0. For x € X, (X")v =
(xn)? = aypu® and thus x° = 2 pcy dxytp for non- negative dy, and at least
Now 3 ey bo = (19)¢ = (19)° = (L ex axx)°
2oxex (X pey xe?) = 3 pey (2 ex @xdxe)p. By linear mdependence,
by = ex axdyyp foreach p € Y. "

one positive d,.,.

By Frobenius reciprocity, (u)y = 2L AGxXXN = Eaiu and (p°)%y =
(uCnN)° = 3 alu®. By Proposition 0.7, pn = b,u® for ea,ch ¢ €Y and so

(;L Ny = Ewey booN = D sy b?P,uO Hence ) = vey b?p. By
the equality of the last paragraph

ST h= 3 (T ade)

x€X pEY pEY S x€eX

2> Z Z(axdxqp)z A (0.2)

PEY x€X

ED I DIL>

XEX  peY

x€X x

Each a, > 0, each dy, is a non-negative integer, and given x € X, some
dye > 1. Consequently, for each f € X, there is exactly one v € Y for
which dg., = 1 while all other dg,, are zero. In particular, x° € IBr,(G|u?).

Furthermore, we must have equality throughout (0.2). Hence for each ¢ € Y

(3 )

x€X

= Z(“xdxw)z-

x€X

Since each a, > 0, at most one dy, # 0. Thus x — x° defines a 1-1

map from X into Y. Now if x® = v € Y, then ay® = x% = yn and

Cliup. 0
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ay = by. Since 30 cyay = 3 ey by, in fact [X| = [Y]. This proves the
lemma. 0

0.32 Theorem. Suppose that G/N is p-solvable, 8 € Irr (N), 8° = ¢ €
IBr(N), and Ig(6) = Ig(p). Assume also that p t o(f) 6(1). If § €
IBr,(G|yp), there exists v € Irr (G|8) such that ° = B.

Proof. By induction on |G : N|. Let n € IBr,(Ig(p)lp) with % = B.
If Ig(y) < G, then the inductive hypothesis implies that there does exist
o €Irr(Ig(e | 6) with ¢° = 5. Since Ig(p) = Ig(8), indeed ¢% € Irr (G|9)
and (69)° = (67)° = 7

that ¢ and 8 are G-invariant.

= . We are done in this case. So we can assume

Let M/N be a chief factor of G. Choose { € IBr,(M]|p) such that 1 €
IBr,(G|¢). Assume first that M/N is a p'-group. By Lemma 0.31, there is
a unique a € Irr(M|6) such that a® = ¢. Since Ig(0) = Ig(p) = G, the
uniqueness of « implies that Ig(a) = Ig(¢). Now ay = 0; +--- + 6, for
not necessarily distinct 6; that are M-conjugate to §. Then p { o(f;) and
(det O)y = (det On) = H:=1 det(8;) has p’-order. Since M/N is a p’A-group,
o(6) is a p'-number, Now the inductive hypothesis applies and there exists
v € Irr (Gla) with 4% = 8. Since Irr (Gla) C Irr (G|f), we are done in the
case where M/N is a p'-group. Since G/N is p-solvable, we have then that
M/N is a p-group, -

By Theorem 0.13, there is a uniqué extension u € Irr (M) of 6 satisfying
p t o(u). By uniqueness, Ig(p) = Ig(8) = G. Now (u®)m = (pm)° =
° = ¢ is irreducible and thus 4° € IBr,(M|yp). By Corollary 0.27, {x°} =
IBr,(Mlp) and so Ig(p) = G = Ig(p). Now B € IBr,(G|i®) because
{(u°} = IBrp(MIC).AThe inductive hypothesis implies the existence of 9 €
Irr (G|p) with ¢° = 5. We are done because Irr (G|u) C Irr (G|9). a

By setting N =1 above, we get the usual form of the Fong—Swan Theo-

rem.



0.33 Corollary. If ¢ € IBr,(G) and G is p-solvable, then there exists
P € Irr (G) with ¥° = ¢.

We close this section with a counting argument that will be used repeat-
edly.

0.34 Lemma. Let G be a Frobenius group with Frobenius kernel K and
complement H. Suppose V is an F[G]-module such that Cy(K) = 0 and
char (F) { |K|. If J < H, then dimCy(J) = |H : J|dimCy(H). In
particular dim(V) = |H|dim Cy(H).

Proof. See [Is, Theorem 15.16]. The second statement is obtained by set-
ting J = 1. O

: Chapter I
SOLVABLE SUBGROUPS OF LINEAR GROUPS

§1  Quasi-Primitive Linear Groups

An irreducible F[G]-module V is called imprimitive if V can be written
V =Vi® --&V, for n > 1 subspaces (not submodules) V; that are permuted
(transitively) by G. If H = stabg(V4), then V = V;€ (induced from H)
(e.g. see [Is, Theorem 5.9]). We say V is primitive, if V is not imprimitive,
or equivalently if V' is not induced from a submodule of a proper subgroup

of G.

An irreducible G-module V is called quasi-primitive if Viy is homogeneous
for all N 4 G. 1t is a consequence of Clifford’s Theorem that a primitive
module V is quasi-primitive. As would be expected, G is a quasi-primitive
linear group if G has a faithful quasi-primitive module. In this case, every
abelian normal subgroup of G is cyclic (by Lemma 0.5). This limits the
structure of G and particularly that of the Fitting subgroup F(G), as is
described by a theorem of P. Hall [Hu, III, 13.10]. This section uses Hall’s

Theorem to give a thorough look at solvable quasi-primitive linear groups.

At times, it is more convenient to weaken the quasi-primitive condition
to Viv homogeneous for all characteristic subgroups N of G. We then call V
a pseudo-primitive G-module. In Section 10, we will see a pseudo-primitive
but not quasi-primitive module for a solvable group G. In that example,

|G| =3%-2 and V]| =43

The structure of a quasi-primitive solvable linear group is a little cleaner
when the underlying field is algebraically closed, but we still will study the
more general case because many of our applications will occur when the field

1s finite.
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1.1 Proposition. Let P be a dihedral, quaternion or semi-dihedral 2-group
with |[P| = 2" (n > 3). Then

(a) |P/®(P)| =4 and |Z(P)| = 2; and

(b) if P is not isomorphic to the quaternion group of order 8, then P

has a characteristic cyclic subgroup of index 2.

Proof. By definition, P has a cyclic subgroup 4 = (a) of index 2 and order
2"~1 with n at least 3 (3, 4 respectively). Now ®(P) < A and A/®(P) is
elementary abelian. Since A = (a) is cyclic, ®(P) is (a) or (a?). But P is
not cyclic and so |P/®(P)| # 2. Hence ®(P) = (a?) has index 4 in P.

Now there exists y € P such that a¥ = a’ where j = -1 (-1,-1+
272 respectively). Since A is abelian and |P: A| =2, Z(P) < A. Direct
computation shows that |Z(P)| = 2. If |P| > 16, then (a?) £ Z(P) and
thus A = Cp((a?)) = Cp(®(P)) is a characteristic subgroup of P. If P is
dihedral of order 8, then (a) is the unique cyclic subg:roup of order 4. O

We let @, D, and SD, denote the quaternion, dilledral and semi-

dihedral groups of order n = 2™, with m at least 3 (3, 4 respectively).

1.2 Theorem. Let P # 1 be a p-group with every characteristic abelian
subgroup cyclic. Let Z < Z(P) with |Z| = p. Then there exist E, T < P
such that '

(i) P=ET, ENT = Z and T = Cp(E);
(ii) E is extra-special or E = Z;
(iii) exp(E) =p orp =2;

(iv) T is cyclic or p = 2, |T| > 16, and T is dihedral, quaternion or
semi-dihedral;

(v) There exists U characteristic in P such that U < T, |T: U| < 2,
U =Cqp(U) and U is cyclic; and ‘

(vi) EU = Cp(U) is characteristic in P.
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Proof. By P. Hall’s Theorem ([Hu, III, 13.10]), there exist E, T <P
satisfying (i), (ii) and (iii). Furthermore T is cyclic, dihedral, quaternion or
semi-dihedral. Now, if |T'| = 8 and T is non-abelian, then P = ET is extra-

special (see [Hu, III, 13.8]) and the conclusion of the theorem is satisfied

_ with P and Z playing the roles of E and T' (respectively). Thus we assume

that T is cyclic, or 16 I |T| and T is quaternion, dihedral or semi-dihedral. If
T is cyclic, we compléte the theorem by letting U = T = Z(P). Assume T is
not cyclic. By Proposition 1.1, there exists U characteristic in T' such that
IT: U| =2, U = (u) is cyclic, and ®(T) = (u*). Since E is extra-special,
®(E) = Z = Z(P) < (u?) = &(T) holds. Therefore, [E,T] = 1 implies that
(u?) = ®(P) is characteristic in P. Since Z(T) < (u?), Cp(®(P)) = U and
hence Cr(U) = U. Thus Cp(U) = EU = Cp(®(P)) and U = Z(EU) arc
characteristic in P. O

1.3 Corollary. Let P be a p-group with every abelian normal subgroup’
of P cyclic. Then P is cyclic, quaternion, dihedral or semi-dihedral. Also,
P % Ds.

Proof. Assume not and let Z < Z(P) with |Z| = p. By Theorem 1.2, there
exist B, T 4 P with E extraspecial, Z < E, T = Cp(E), TNE = Z and
T cyclic, dihedral, quaternion or semi-dihedral. Now |E| = p?™*! for an
integer n and there exists Z < A < E with A abelian of order p™*! (see
[Hu, III, 13.7]). Since A < P, A is cyclic. But the exponent of E is p or 4.
Thus |4| = 4 and |EB| = 8. We may assume that P > E and thus T > Z.
Then there exists 2 < 5 < T with S cyclic of order 4. Since S < P and
S < Cp(A), AS is a normal abelian subgroup, which is not cyclic. This

contradiction completes the proof. _ O

Under the hypotheses of the above corollary, P has a cyclic subgroup of
index p, as is proven in [Hu, III, 7.6], but this is a weaker conclusion. Satz
1.14.9 of [Hu] lists all p~g\‘r0ups with a cyclic maximal subgroup, but observe
that the groups in (a) and (b3) of that list have normal subgroups that are

abelian but not cyclic.
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1.4 Corollary. Assume that every characteristic abelian subgroup of G is
cyclic. Let py,...,pi be the distinct prime divisors of |F| for F = F(G) and
let Z < Z(F) with |Z| = py -+ pi. Then there exist E, T < G such that
(i) F=ET,Z=ENT and T = Cp(E).
(i) The Sylow subgroups of E are extra-special or cyclic O.f prime order.
(iii) exp(FE | 2py - \ .
(iv) If a Sylow p;-subgroup\ T; of T is not cyclic, then p; = 2, |T;| > 16
and T; is quaternion, dihedral or semi-diledral.
(v) There exists UcharG with U cyclic, U < T, U = Cp(U) and
|T:U| < 2.
(vi) BU = Cp(U) is characteristic in G.
(vii) If every characteristic abelian subgroup of G is in Z(F), then U =
T =7Z(F).

Proof. Let P,,...,P; be the Sylow subgroups of F. For each i, write
P; = E;T; as in Theorem 1.2. Set E =[], E; and T =[], T;. Parts (i)-(vi)
now immediately follow. Furthermore, U is characteristic in F and in G.
Thus, for (vii), we have by hypothesis that U < Z(F). Since |T: U| < 2
Cand U = Cp(U), T =U = Z(F). : m

. We assume that G is solvable and is as in the above corollary. By a
" theorem of Gaschiitz (see Theorem 1.12 below), F/®(G) = F(G/®(G)) is a
completely reducible and faithful G/F-module. Suppose now that F' < G’
and that every abelian characteristic subgroup A of G is cyclic. Since the
" “automorphism group of a cyclic group is abelian, we have A < Z(G') and
A < Z(F). By Corollary 1.4 (vii), U = T = Z(F), and ®(G)Z/®(G) =
Z/(®(G)N Z) is centralized by G'. Hence Gaschiitz’s Theorem implies that
"F|/®(G)Z is a completely reducible and faithful G'/F-module.

1.5 Lemma. Assume that Z < Z(E), Z is cyclic and E/Z abelian. Let
A < Aut(E) with [E,A] < Z and [Z,A] = 1. Then |A| | |E/Z]|.

‘Proof. For a € 4, define po: E/Z — Z by 9 (Z2)=[z,qa]. Since [Z,A]=
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and [E,A] < Z < Z(E), ¢, is well-defined and ¢, € Hom (E/Z, Z), View
Hom (E/Z,Z) as a group (with pointwise multiplication). Then a = ¢, is
a monomorphism of A into Hom (E/Z, Z), because A acts faithfully on E.
It thus suffices to show that |Hom(E/Z, Z)] | |E/Z|.

Write E/Z = Dy X -+ x D,, for cyclic groups D;. Since Hom (E/Z,Z) =
[1; Hom (D;, Z), it will be sufficient to show that [Hom (D;, Z)| | |D;]. Since
D; and Z are both cyclic, |[Hom (D;, Z2)| = (|Ds],12]). O

1.6 Corollary. Assume that Z < E < G, Z = Z(F) is cyclic and E/Z is
abelian. Let A = C¢(Z), B=Cg(E) andC = C4(E/Z). Then Z = BNE
and EB =C.

Proof. Note that BNE = Z and so |EB/B| = |E/(BNE)|=|E/Z|. The
hypotheses imply that C/B acts trivially on both E/Z and Z, while acting
faithfully on E. Lemma 1.5 implies that |C/B| < |E/Z|. But B< EB < C
and |EB/B| = |E/Z|. Thus EB = C. 0

1.7 Corollary. Suppose that E/Z is abelian, Z is cyclic, Z < F < E and
Z=172(F)=7Z(FE). Then E/Z = F|Z x Cg(F)/Z

Proof. Apply Corollary 1.6 with E replacing G and F' replacing E. a

1.8 Corollary. Suppose that E 4 G, Z = Z(FE) is cyclic and E/Z is
abelian. Assume that whenever Z < D < E and D < G, then D is non-
abelian. Then E|Z = E\|Z x --- x Eo/Z for chief factors E;/Z of G with
Z = Z(E;) for each i and E; < Cg(Ej;) fori # j.

Proof. Let Z < D < E with D < G. Since Z < Z(D) 9 G and Z(D)
is abelian, Z(D) = Z. By Corollary 1.7, E/Z = D/Z x Cg(D)/Z. By
choosing D so that D/Z is a chief factor of G and by arguing via induction
on |E/Z|, the conclusion easily follows. O

'“"1
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. and conclusion (vi) holds.
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1.9 Theorem. Assume that every abelian normal subgroup of G is cyclic.
Let P # 1 be a normal p-subgroup of G. If p = 2, also assume that G is
solvable. Let Z < Z(P) with |Z| = p. Then there exist E, T < G such that

(i) ET=P,ENT =2 and T = Cp(E);

(i1) E is extra-special or E = Z;

(iii) exp(E) =porp=2;

(iv) T is cyclic, or p =2 and T is dihedral, quaternion or semidihedral;

(v) if T is not cyclic, then there exists U 4 G with U cyclic, U < T,
|T: U| =2 and Cp(U) = U; and f

(vi) if E > Z, then E/Z = E,|Z X --- x E,/Z for chief factors E;/Z of
G and with Z = Z(E;) for each 1 and E; < Cg(E;) for i # j.

Proof. Assume that p is odd. By Theorem 1.2, there exist £, T' < G
satisfying (i) through (v). Since T = Z(P) and E = {z € P | P =1}, we
have E, T 9 G. If Z < D < E and D < G, then exp(D) = p and D is not
cyclic. Thus D is not abelian. By Corollary 1.8, part (vi) follows. We are

done if p is odd. We thus assume that p = 2 and proceed by induction on

1P|

By Theorem 1.2, P = F'S where F' is extra-special, FN.S = Z, S is cyclic,
or |S| > 16 and S is quaternion, dihedral or semi-dihedral. Furthermore,
there exists U characteristic in P with U < S, U cyclic, |S: U} £ 2 and
U = Cs(U). First assume that U < S. Now Cp(U) = FU is a characteristic
subgroup of P of index 2. Also U = Z(FU) is cyclic of order at least 8.
The inductive hypothesis applied to FU < G implies there exists an extra-
special subgroup E < G (possibly E = Z) such that FU = EU, ENU = Z
Let T = Cp(E) > U. Since P centralizes
F|Z = F/(FnU) & FUJU = E/Z, Corollary 1.6 implies that ET = P
and ENT = Z. Thus U is a cyclic subgroup of index 2 in T with |U| > 8.
Since Z(P) = Z(FS) = Z, T is not cyclic and Theorem 1.2 implies that T
is quaternion, dihedral or semi-dihedral. Also, T = Cp(E) is normal in G.
We are done if U < S. We hence assume that U = § = Z(P) is cyclic. We

also assume that F' > Z.
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Suppose that |S| > 8. Let V < S have index 2 and set m = exp(V).
Observe that F'V = {z € P | 2™ = 1} is a characteristic subgroup of P of
index 2. The inductive hypothesis applies to F'V and we argue similarly to
the last paragraph (in this case T = S = Cp(E) = Z(P) is cyclic). Thus

we may assume || < 4.

Suppose that |S| = 2 and so P = F'is extra-special. We may in this
case assume there exists 7 < W < P with W < G and W abelian, since
otherwise the conclusion of the theorem is reached by setting E = F, T = Z
and applying Corollary 1.8. Now W is cyclic and hence of order 4. Since
Z =Z(P), |P: Cp(W)| =2and Cp(W) < G. By the inductive hypothesis,
there exists an extra-special group E Q G (possibly E = Z) satisfying (vi)

“such that EW = Cp(W)and ENW = Z. Let T = Cp(E) < G. By

Corollary 1.6, ET = P and ENT = Z. Observe that |T: W| = 2 and
T = Dg or Qs. We are done when |S| = 2 (with U = W). We hence assume
that |S| =4 = exp(P).

"Let H/S be a chief factor of G with H < P. Since exp(H) =4 < |H|,
H is not cyclic and thus H is non-abelian by the hypothesis. By Corollary
1.8, P/S is a completely reducible G-module. Thus we have P/S = H,/S x
-+-X H, /S for minimal normal subgroups H;/S of G/S with S = Z(H;) for
each 7 and H; < Cp(Hj) for i # ;. )

Assume there exist E," < G with H; = SE; and E; NS = Z. Then
Z = Z(E;) for each i, E; < Cp(FE;) for i # j and E;/Z = H;/S is a chief
factor of G. Let E =[], E;, so that E/Z = E\/Z x --- x E,/Z. Since E
is a central product of the extra-special groups E;, E is also extra-special.

The conclusion of the theorem is then satisfied by setting T' = S.

To complete the proof, we need just show there exists L < G such that
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"LS =Hand L NS = Z. Let A = Cg(S), so that |G/Al < 2. Let
'C = Cy4(H/S) > P. Since H/S is a chief factor of G and a non-cyclic
2-group, C < A. By Corollary 1.6, C = H.Cg(H) and so C centralizes the
abelian group H/Z. Let M/C be a chief factor of G with M < A. Since
G is solvable, M/C is a g-group for some prime g. Since. H/S is a chief
" factor of G, observe that Cruys(M/C) =1 and q # 2. We apply Fitting’s
‘Lemma 0.6 to the coprime action of M/C on H/Z and obtain H|Z =
(H/Z, M[C)x Cyy5(M/C) = [H[Z, M|C] x S/Z. Set L|Z = |H/Z, M/C]
to complete the proof. O

1.10 Corollary. Suppose G # 1 is solvable and every normal abelian sub-
group of G is cyclic. Let F = F(G) and let Z be the socle of the cyclic
group Z(F'). Set A= Cg(Z). Then there exist E, T < G with
(1)) F=ET,Z=ENTand T = Cr(E).
(ii) A Sylow g-subgroup of E is cyclic of order q or extra-special of
exponent ¢ or 4.
(iil) £/Z = Ei/Z x --- x E,/Z for chief factors E;/Z of G with E; <
Cg(E;) fori # 3.
(iv) For each i, Z(E;) = Z, |E;/Z| = p:™ for a prime pi and an Integer
ni, and B; = O (Z)-F; for an extra-special group F; = 0,,(E) 2@

2n;+1
i .

of order p
(v) There exists U < T of index at most 2 with U cyclic, U 4 G and
Cr(U)=U.
(vi) @ is nilpotent if and only if G = T.
(vii) T'= C¢(FE) and F = C4(E/Z).
(vili) E/Z = F/T is a completely reducible G/F-module and faithful
A/F-module (possibly of mixed characteristic).

(ix) A/CA(E:/Z) < Sp(2ni,ps).
(x) If every normal abelian subgroup of G is central in F, thenT = Z(F)

is cyclic..

Proof. Parts (i)-(v) follow from Theorem 1.9. To prove (vi), we assumne

that G is nilpotent and show that G = T'. Since G is nilpotent, G = F(G) =
F = ET. Since T < Cg(E), every subgroup of E/Z is normal in G/Z. If
E;/Z is a chief factor of G with E; < E, then |E;/Z| is a prime and E;
is abelian, contradicting (iv). Thus E = Z and by (i), T = F = G. This

proves (vi).

Let B = Cg(E) < A and C = C4(E/Z). Since Cp(F) = T, we have
BF < C and Corollary 1.6 yields C = EB = FB. To establish (vii) it thus
suffices to show that B = T. Assume not and let X/T be a chief factor
of G with X < B. Now X £ F, since otherwise Z < X NE < Z(E), a
contradiction. As X/T is an r-group for a prime r, we write X = TR for
R € Syl.(X). Since X is not nilpotent and T is, we may choose a prime
q # r and Q € Syl (T) with [@, R] # 1. If, on the one hand, ¢ = 2, then
(v) ensures the existence of a cyclic subgroup U < @ with |@: U] = 2 and
U 4@G. Tl;erefore, R has to centralize ). If ¢ > 2, then R centralizes
the socle of the cyclic group @, because R < B < Cg(Z). Since r # g,
R < Cg(Q). Part (vii) follows from this contradiction.

Theorem 1.9 implies that E/Z is completely redu'cible as a G-module and

hence also as an A-module. Part (viii) now follows from (vii).

Now E;/Z has a non-degenerate symplectic form ( , ) over GF(p;), namely -

the commutator map (zZ,yZ) = [z,y], with E] = 0,,(Z) identified as
GF(p;:) (see [Hu, III, 13.7 (b)]). This form is preserved by A = Cg(Z) and

part (ix) follows.

Let U be a cyclic subgroup of T of index at most 2 with U < G. By
hypothesis (x), U < Z(F) and T is abelian. Thus T' = Z(F) is cyclic. This

completes the proof of the corollary. ]

Note that the additional hypothesis of (x) is satisfied provided that F' <
G'. Moreover, when A = G in Corollary 1.10, we see below that E/Z has
a complement H/Z in G/Z satisfying Cg(E) < H. Since T = Cg(E), it

then follows that F//T is complemented in G/T as well.

~

.
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1.11 Lemma. Suppose that Z < E 4 G, Z = Z(E) is cyclic and central
inG,and E/Z = E\[|Z x -+ x E,,/Z for chief factors E}/Z of G. Assume
that G is solvable and E; < Cg(E;) if and only if 1 # j. Then there exists
H<GwithEH=G,ENH =Z and Cg(E) < H.

Proof. We argue by induction on |E/Z|. The result is trivial when E = 2
and we thus assume that m > 1. We let C = C¢(F) and B = Cg(E/Z).
Since Z < Z(G), Corollary 1.6 yields B = EC and ENC = Z. In particular,
B/C = E/Z as G-modules.

First suppose that m = 1. Then E/Z is a faithful irreducible G/ B-
module. Since Z = Z(E), |E/Z] is not prime and so B'< G. Let M/B be
a chief factor of G. Then M/B is a p-group for a prime p, and furthermore
pt|E/Z|=|B/C|. Thusif P/C € Syl,(M/C), then BP = M and BN P =
C. Now Cg/z(P/Z) = Cgyz(M/B) = 1, because E/Z = B/C is a faithful
irreducible G/B-module and M/B < G/B. The Frattini argument implies
that G = M - Ng(P/C). Setting J = Ng(P/C), we have that

EJ = E(CPJ) = (EC)PJ = BPJ = MJ = G.

Since E/Z is abelian, ENJ 4 EJ = G. Thus ENJis Z or E. In the latter
case, G = J = Ng(P/C) and P/C 4 G/C, wheuce P/C and M/B act
trivially on B/C 2 E/Z, a contradiction. Thus ENJ = Z and the result

t

follows in this case by setting H = J. We may assume that m > 1.

By the last paragraph, there exists J < G satisfying E,-J = G, E;nJ = Z
and Cg(E,) < J. In particular, E,---E,, < J. Observe that ecach E;/Z
(i > 1) is even a chief factor in J, because F; - J = G and [E1, Ei] = 1.
Setting F' = E,-- +Em, the inductive hypothesis applied to J implies that

there exists H < J such that FH =J, HNF = Z and C;(F) < H. Now

EH:ElFI{:Elsz,
ENH=EnNJNH=(EFN))NH=(ENJ)FNH=FNH = Z, and

Co(E) = Ce(E;) N C(F) < JNCg(F) = C,(F) < H. 0
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Relatéd to Lemma 1.11 is a theorem due to Gascliitz, which has frequent
use later in the text. Recall that the Frattini subgroup ®(G) is a normal

nilpotent subgroup of G.

1.12 Theorem (Gaschiitz). Let G be solvable. Then
F(G/2(G)) = F(G)/2(G)

is a completely reducible and faithful G/F(G)-mbdule (possibly of mixed
characteristic). Furthermore, G/®(G) splits over F(G)/®(G).

Proof. See [Hu, 111, 4.2, 4.4 and 4.5}, 0

§2  Semi-Linear and Small Linear Groups

We begin this section with semi-linear and affine semi-linear groups.
These groups play an important role in the study of solvable linear groups
and solvable permutation groups (e.g. see Theérem 2.1 and the paragraph
following it). We conclude the section by characterizing solvable irreducible
subgroups of GL(n,q) for small values of ¢". In between, some standard
arguments in representation theory are presented. In many of these argu-
ments, we require that the underlying field has positive characteristic or is
algebraically closed in order to guarantee trivial Schur indices (see Proposi-
tion 0.4). '

L(;,t V Dbe the Galois field GF(¢™) for a prime power \q. Of course V is
a vector space over GF(gq) of dimension m. Fix a e V\ {0} =V# weV
and ¢ € G := Gal (GF(q™)/GF(¢)): We define a mapping

T:V->V by T(z)=az’ +w.

Then T is a permutation on V and T is trivial if and only if a = 1, ¢ = 1

and w = 0. Thus we have the following subgroups of Sym (V):

i) AV)={z z+w l w € V} consisting of translations.



(i1) The semi-linear group
 I(V) = {z > az” | a € GF(g™)*, o € G).
(iii) The subgroup To(V) = {z r az | a € G#} of T(V), consisting of

multiplications.
(iv) The affine semi-linear group

AT(V)={z— az° 4w | a€ GF(¢™#*, 0€G, we V}.

Clearly, A(V) acts regularly on V and A(V) = V as vector spaces over
GF(q). Now both A(V) and V are L(V)-modules, where I'(V) acts on
A(V) by conjugation and on V by semi-linear mappings. Hence, as is easily
checked, A(V) =V as GF(q)[P(V)]-modulés. Observe that I'(V) and even
‘ '._FO(V) act transitively on the non-zero elements of A(V) and V. In fact,

AT(V) is the semi-direct product of A(V) and I'(V) (and is isomorphic to
the semi-direct product of V and I'(V)). Also I'(V) is a point-stabilizer (for
zero) in the doubly transitive permutation group AT'(V'). Note that Ty(V)
is cyclic of order ¢™ — 1 and I'(V))/To(V) 2 G is cyclic of order m. If ¢ € g
| has order n, then |Cy(0)| = [Cavy(o)] = g™/ and 'CFO(V)(J)I =gm/n_1,

We will also write I'(¢™) for I'(V), etc.. Our notation is different from
that in [Hu; II, 1.18(d)], where I is used to denote what we call AT'. Observe
. that e.g. I'(8?) and I'(4%) are distinct proper subgroups of I'(2°). For the

most part, we will assume that the base field GF(q) is the prime field.

‘Theorem 2.1 will turn out to be critical for many topics in this book.

2.1 Theorem. Suppose that G acts faithfully on a G F(q)-vector space V
of order ¢™, ¢ a prime power, Assume that G has a normal abelian subgroup
A for which V4 is irreducible. Then G may be identified as a subgroup of
I'(¢g™) (i.e. the points of V may be labelled as the elements of GF(¢™) in
such a way that G <T(¢g™)) and A < Dy(q™).

Proof. Let D = End4(V). By Schur’s Lemma, D is a division ring. Since
V is finite, D is finite and hence a field. Now A < Cg(A) < D#. Thus

ety 1l

Cg(A) is a cyclic normal subgroup of G. Without loss of generality, we may
assume that A = Cg(4).

Since every D-invariant subspace of V is also A-invariant, V' is an irre-
ducible D-vector space, i.e. dimp(V) = 1. In particular, D = GF(¢™). In
order to label the points of V by the elements of D, we fix some w € V#,
We then identify v € V with the unique d € D such that v = wd. For
f € D, the vector vf corresponds to df, and so scalar multiplication on V'
agrees with field multiplication in D. Since A < D, A < T'y(¢™) follows.

Let ¢ € G. We wish to show that g € ['(¢g™). Let b := 1g € D¥#, ie.
b corresponds to wg € V#. Then h := gb~! € GL(m,q) and 1h = 1.
Since b™' € I'o(g™), it suffices to show that h € I'(¢™). As 4 4 G and
D# = CG:L( vy(4), D# is G-invariant and thus (h)-invariant. Now D# = (a)
for some a, because D# is cyclic. Let h™lah = a™ for some m € Z, so that
h='a'h = a™ for all <. It suflices to show that h € Gal (GF(¢™)/GF(q)) <
['(g™). Certainly, h acts GF(q)-linearly. Let z, y € D¥#, say = = a' and

y = a’. Because 1h = 1, we have that
zh = (1la")h =1h7Ya'h) = 1(h7'a'h) = 1a'™ = a'™.

Likewise, yh = a*™ and (zy)h = a*TY™ = (zh)(yh). This shows that h is
a field automorphism of GF(¢™). . 0O

Alternatively, Theorem 2.1 follows from [Hu, II, 3.11] with s = 1..

Suppose that H is a primitive solvable permutation group on a finite set
Q with point stabilizer Hy (o € Q). Then H has a unique minimal normal
subgroup M, H =M -Hy, MNH, =1,Cp(M) = M and M acts regularly
on ). Consequently, || = |[M| = p™ is a prime power. Moreover the
mapping m — am (m € M) is an H, permutation isomorphism between
M and }; here H, acts on M by conjugation. We may consider H as
a subgroup of the affine linear group AGL(m,p), where M is the normal
subgroup consisting of all translations (see I, 2.2, II; 3.2 and II, 3.5 of [Hu]).

In particular, H is doubly transitive if and only if H, acts transitively on

.

_—
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M#. (More will be said about solvable doubly transitive permutation groups

in §6.)

Suppose that H, has a normal abelian subgroup A that acts irreducibly

on M. As a consequence of Theorem 2.1, the points of Q and M (re-
spectively) may be labelled as the elements of GF(p™) in such a way that
Hy, <T(p™), A <To(p™), and hence H < AT(p™) (cf. also [Hu, II, 3.12]).

If V is a finite faithful GF(¢)-module for a group G such that G may be
identified as a subgroup of I'(V') (i.e. after a labelling of the points of V'), we
will write G < T'(V'). This may be a little sloppy, but of course this will only

be done when there has been no previous labelling of the points of V. Note |

that I'(V") of course depends on a particular labelling. We will combine the

last theorem and the next lemma in a convenient corollary.

2.2 Lemma. Let V be a faithful irreducible F[G]-module, and let A be a
normal abelian self-centralizing subgroup of G such that V4 is homogeneous.
If char(F) # 0 or F is algebraically closed, then V} is irreducible.

If in particular G is solvable, I' := F(G) is abelian and V[.v hotnogencous,
then Vp is irreducible.

Proof. Since V, is homogeneous and 4 is abelian, 4 is in fact cyclic. Write

V4 = eW for a faithful irreducible F[A]-module W and ¢ € N. Our aim is

to show that e = 1.

Let K be an algebraically closed extension of F, with K = F should
char(F) = 0. Now V@r K = Vi & EBV; and WK =W @
W, for distinct absolutely irreducible G- modules Vi and distinct absolutely
irreducible A-modules W; (see Proposition 0.4). In particular,

(Vi @V)a=(VRrK)a=Va®srK=c(W,&---&W,).

Since Wj is a faithful absolutely irreducible module for the cyclic group
A and since Cg(4) = A, Ig(W;) = A. Hence WC is an irreducible
G-module by Clifford’s Theorem (see Theorem 0.1). Also, W; has say | =
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|G : A| G-conjugates. Without loss of generality, the G-conjugates of T,
are W1,... , Wi, We may also assume that W& = V4. Therefore, W/ =W
for 1 <5< l, and since dimg(V7) =1+ dimx(Wh), Vi)a=Wi @ & W

Likewise, if Wy is a constituent of (Vi) 4, I/VkG = V;. Thus W; is not a
constituent of (V;)4 for ¢ > 2. Hence e = 1.

The supplement follows since Cg(F) < F in solvable groups G. a

2.3 Corollary. Suppose that V is a faithful irreducible GF(q)[G]-module
for a solvable group G and a prime power q. Let I = F(G).

(a) If F is abelian and Vp is homogeneous, then G < T(V).

(b) If V is quasi-primitive and F = T (T as in Cor. 1.10), then G <
(V). '

Proof. (a) By Lemma 2.2, Vi is irreducible and so Theorem 2.1 implies
that G < (V).

(b) We adopt the notation of Comllary 1.10 which apphcs to G because
V is quasi-primitive. Since by our hypothesis E/F = F/T =1, part (viii)
of Corollary 1.10 implies that Cg(2) = A=F=T. Now Z < U, and
Cr(U) = Cg(U), by Corollary 1.10 (v).
cyclic, Lemma 2.2 and Theorem 2.1 yield G < rwv). . O

consequently U = Since U 1s

2.4 Lemma. Let F be a group with center Z. Suppose that V is a faithful
irreducible F|F]-module where F is a field that has positive characteristic or
is algebraically closed. Assume that char(F) t |F|. Let W be an irreducible
7 submodule of V. Then dimz(V) = te - dimz(W) for integers t and e,

with e = x(1) for a faithful irreducible ordinary character x of F.

Proof. Since Z = Z(F), Clifford’s Theorem implies that Vz & f - W for
an integer f. Let K be a Galois extension of F such that K contains an

|F|* root of unity. If F is algebraically closed, we choose F = K. Then all



irreducible K[#)- and K|[Z]-representations are absolutely irreducible. Now
VerK=Vio---9V,

. for absolutely irreducible }C[F]-modulés Vi that are the distinct Galois con-

Jugates of V}, i.e. the V; afford K-representations X; of F that are conjugate:

-, under the Galois group Gal(K/F) and {X1,..., X} form an orbit (see
Proposition 0.4). Similarly,

WRrK=W,®---¢W,

for absolutely irreducible K[Z]-modules W;, whose representations form an

orbit under Gal(K/F). Now ‘
(V1@---GBVI)Z=(V®f/C)z=V®f/C%’f(W1 B---@W,).

- For each 7, (V;)z has a unique W; as a constituent, because Z. = Z(F).
If an element of Gal (K/F) maps W, to Wj, then it must map the set
Ve [ (Vi)z = Wi @ - & Wy} to the set {V, | (VW)z =W 60 w,).
Thus the number of distinct V; for which a given W; is a constituent in
(Vi)z is I/s (i.e. the number is independent of the particular choice of 7)
.In particular, s ] I. Since the W; are absolutely irreducible modules for
the abelian group Z, dimg(W;) = 1 for all 5. Observe that V1 is a faithful
K[F]-module, because V was assumed to be a fajthful F[F]-module. Since
char (K) { |F|, dimg(V;) = x(1) for a faithful x € Irr (F). Now

dim (V) = dime(V @£ K) = - dim(Vy) = 1- x(1)

and .
dimz(W) = dimxg(W @ K) = s - dimx (W) = s. |
Thus .
dimz(V) = (I/s) - x(1) - dimz(W).
Set t =1/s € N to complete the proof. (]

t

2.5 Corollary. Let V be a faithful irreducible F[G]-module for a field F.
If char (F) = 0, assume that F is algebraically closed. Suppose that P 4G
and P is a non-abelian p-group. Then p | dimx(V).

Proof. Because O,(G)'# 1, p { char(F). Now Vp = V1 @ --- @ V,, for
irreducible P-modules V; such that P/Cp(V;) = P/Cp(V;) for all 1, j.
Since (); Cp(Vi) = 1 and P is non-abelian, each P/Cp(V;) is non-abelian.
By Lemma 2.4, p | dim#(V;) for all © and so p l dim£(V). O

The next result, which again is a consequence of Lemma 2.4, applies
to the Fitting subgroup of quasi- and pseudo-primitive linear groups (cf.

Corollaries 1.4 and 1.10).

2.6 Corollary. Assume that H = EU where U = Z(H) is cyclic, UNE =
Z(E), E is nilpotent and the Sylow subgroups of E are extra-special or
of prime order. Let V be a faithful irreducible F[H]-module and W an
irreducible submodule of Vyy. If char (F) = 0, assume that F is algebraically
closed. Then dimz(V) = e - dimz(W) with e* = |H: U|.

Proof. First observe that char(F) { |[H|. Since F is a direct product of
extra-special groups and groups of prime order, [H/U| = |E/Z(E)| = €* for
an integer e and each faithful ¢ € Irr(E) has degree e (see [Hu, V, 16. 14]).
Since U = Z(H) and H = EU, every ¢ € Irr (E) is H-invariant. But H/E
even is cyclic and so every x € it (H|p) extends ¢ (see Proposition 0.11).
In particular, if y is faithful, so is  and x(1) = (1) = e = |H : U|'/%. By

Lemma 2.4 and its proof,

dimz(V) = et - dimg (W)

where t is the number of irreducible non-isomorphic constituents of V@ K
whose restriction to U = Z(H) is a multiple of a fixed irreducible constituent
Wi of W@ £XK. Recall that all irreducible constituents of VQ £ X and W® £A

are absolutely irreducible.

ey
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4

Let xy = e- A for a faithful X ¢ Irr (U). By [Is, Exercise 6.3], which is
restated below as Proposition 12.3, Irr (H|A) = {x}. Thus ¢ = 1. O

2.7 Example. Let C # 1 be a cyclic group and assume that the prime
power ¢ is coprime to |C|. Let I be the smallest posmve integer such that

IC| | ¢'— 1. Then every faithful irreducible GF(q)[C] module has dimension
L

Proof. Let V be a faithful irreducible GF(q)[C]-module. Every C-orbit on
V# has size |C|. Thus ICI| V] = 1. Set |V| = ¢*. Since ¢* =1 (mod |C]),
] k.

Let K = GF(q"). Then V Qcrip K = Vi@ - @V, for distinct ir-
reducible K[C]-modules V; that are afforded by representations which are
Galois conjugate under Gal (K/GF(q)) (see Proposition 0.4). Hence t <
[K: GF(q)] = I. Since K contains a primitive [C]™ root of unity, every irre-
ducible K[C]-representation is absolutely irreducible and thus dimg(Vi) =1
dimgp((V) = t - dimg(V1) = t < I < k and
dimg (V) = 1. ' ‘ 0

for each :. Hence k =

The next lemma gives some structure about imprimitive linear groups.
What then follows is information about “small” linear groups. Often, with
solvable groups, ad hoc arguments are needed to handle “small” cases. We
collect some information for later use. There is some overla,p'with what

appears in Suprunenko’s book [Su], but our approach is slightly different.

Suppose that U is a faithful irreducible H-module for a group H # 1 and

. that S is a transitive subgroup of the symmetric group S, (n > 1). Then

Ur:=U+4...
Hwr 5. Also, U™ is an imprimitive (Hwr S)-module.

+ U is a faithful irreducible module for the wreath product

2.8 Lemma. Lei V be a faithful irreducible F|[G)-module and suppose
V=Vi®@ - @&V, (n>1)isasystem of imprimitivity for G. Let y: G — Sy

" be the homomorphism induced by the permutation action of G on the V.
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Set S = v(G), which is a transitive subgroup of S,. Let finally H =
Ng(V1)/Cq(Vh). Then G is isomorphic to a subgroup of Hwr S as linear

groups.

" Note. The conclusion is stronger than just G < HwrS. But rather G

as a linear group on V 1is isorﬁorphic to a subgroup M of the linear group

" HwrS on V{*. Tt is the stronger form that we desire. Note further that then

G < Aut(Vy)wr S, as a liriear group.

Proof. Fix a basis By for Vy, let r = dim(V;) and I = Ng(V1). For z € I,
let X(z) be the matrix afforded by « relative to By. Thus

X:I—- GL(r,F)

is a répresentation of I with kernel Cg(Vi). Let K = {X(z) | = € I} so
that < GL(r,F) and K 2 I/Cg(V))=H
Consider the following subsets of GL(rn,F):
ky 0
ks
M = ) ki € K < GL(r, F)

0 ’ k,
and N the set of those matrices obtained by applying a “block-preserving”
permutation of the columns of an element of M by an element of s € § < .5,,.

By choosing an appropriate basis for V", we have a representation
Z:HwrS— N

that is faithful and onto. Furthermore, H wr S and N are isomorphic as
linear groups. Thus we intend to show that G is isomorphic as a linear

group to a subgroup of N.

Since G transitively permutes Vi,... ,V,, we may choose a complete set
{91 = 1,92,... ,gn} of coset representatives of I in G with Vyg; = V;. We
extend By to a basis Bof V by B= By UDB1goU---UBqg,. WeletY be

P
the representation afforded by G relative to B so that

Y: G- GL(rn,F)



T

is faithful. It suffices to show that Y (g) € N for all g € G. -

Fix ¢ € G. For each ¢, there exists h; € I such that g;g = h;g;, where

7 =1-7(9)- Now the matrix

X(h]) 0
C = ‘._
0 X(hn)

" isin M and Y(g) is the matrix obtained by a “Block-preserving” permutation

s =+(g) € S to the columns of C. Thus Y(g) € N. O

If V is an imprimitive irreducible faithful G-module, then V is induced

from an irreducible module W of a maximal subgroup H of G. Then
G < (H/Cxy(W)) wr S

where S is a primitive permutation group on ¢ := |G : H| letters. In fact,

-S = G/coreg(H). The maximality forces H to be Ng(W).

2.9 Lemma. Suppose that H < G and V is a faithful F[G]-module that
is irreducible as an F[H|-module. Assume that char(F) # 0 or F is alge-
braically closed. Then Cg(H) is cyclic.

Proof. - Without loss of generality, G = H-Cg(H) and H 9 G. Let K be
an algebraically closed extension of F, with £ = F should char(F) = 0.

It again follows that
VerK=Vid---8V,

for non-isomorphic absolutely irreducible faithful [G] modules V; (see Pro-

position 0.4). Likewise,

Vi@srK=W0---& W,

for non-isomorphic absolutely irreducible faithful /'C[H]—ﬁxodules W;. Since
Va®rK = (V®£K)u, we have that (V1) 4 is a direct sum of non-isomorphic
absolutely irreducible K[H]-modules that are G-conjugate. Because G =
H-Cg(H), each W; is G-invariant. Thus (V;)y is an absolutely irreducible
K[H]-module and Schur’s Lemma yields

K = Endgg)(V1) = Cenavi)(H)-

Therefore, Cg(H) is isomorphic to a finite subgroup of the multiplicative
group of the field K. Hence C(H) is cyclic. : O

2.10 Lemma. Suppose that V is a faithful quasi-primitive F[G]-module
for a solvable group G and a finite field 7. Corollary 1.10 applies and we
let E, T, Z and F = F(G) be as in that Corollary. Set ¢* = |E/Z|. Then
(1) If dim#(V) = e dimx(W) for an irreducible Z-submodule W of V,
then T = Z(F') = Cg(E) and T is cyclic.
(i1) Suppose that E # Z. Hence there exists 1 # D < G such that E =
DZ and all Sylow subgroups of D are extra-special. If dimz(V) = e-
dim #(Y) for an irreducible Z(D)-submodule Y of V, then T = Z(F)
and D/Z(D) = E/Z = F/T isa faithful completely reducible G/F-
module. . .
(i) fdimz(V) = e, then T < Z(GL(V)) and F/T = E/Z is a faithful
completely reducible G/F-module.
(iv) If dimx(V) is a prime, then dimx(V) =e or G < T(V).

Proof. We shall freely use the assertions of Corollary 1.10.

(i) Let V4, be an irreducible E-submodule of V. Since V' is quasi-primitive,
Ve 2 Vo®--- @V, and Corollary 2.6 yields dimx(Vy) = e-dimx(W). Thus
Vg is irreducible.” Applying Lemma 2.9, Cg(F) is a cyclic normal subgroup
of G and thus Cg(E) = Cp(E) = T. Since F' = ET, it follows that
T = Z(F) = Cg(E) is cyclic. '

(i1) Observe that |D/Z(D)| = |E/Z| = €. Hence the same argument as

in (i) shows that Vp is irreducible. Since F' = DT, repeating the arguments

i
R
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in (1) yields that T = Z(F) = Cg(D). Let B = Cg(Z(D)). By Lemma
1.5, |Cp(D/Z(D))/T) divides |D/Z(D)| = |F/T|. But F < C5(D/Z(D))
and so F' = Cp(D/Z(D)). Set C = C¢(D/Z(D)). Then CNB = F and
C/F acts faithfully on Z(D). Assume that F < C and choose ) € Syl,(C)
for a prime divisor ¢ of |C/F|. Then there exists a Sylow p-subgroup P of
D such that [Z(P),Q] # 1. In particular we have p # ¢, since otherwise
Z(P) < Z(Q). Note that Z(P) = ®(P) and Q centralizes P/ ®(P), because
@ < C. But then [P,Q] = 1, a contradiction. Thus F = C and G/F
acts faithfully on D/Z(D) % E/Z = F[T. That the action is completely
reducible follows from Corollary 1.10.

(iii) Assume now that dimx(V) = e. Recall that dimx(Vy) = e - dim £ (W)
for an irreducible E-submodule Vo of V. By (i), Vg is irreducible and
T = Z(F) is cyclic. Since E < F, also VF is irreducible. Let X be an
irreducible T-submodule of V. We again apply Corollary 2.6 and obtain

e = dimx(V) =e- dimg(X).

Thus dim#(X) = 1, and since Vo 2 X @ --- @& X, T acts on V by F-
scalar multiples of the identity. This implies T < Z(GL(V)); in particular,
Z < T < Z(G) and part (iii) follows from Corollary 1:10.

(iv) Assume that dimx(V) is a prime. Since e | dimz(V), we may as-
sume that e = 1 and hence that ' = T. Then G < I'(V) by Corollary
2.3(b). 0

By Corollary 2.6, the hypothesis on dimensions in Lemma 2.10 (ii) will
be satisfied if Vp is irreducible.

2.11 Theorem. Let G be a solvable irreducible subgroup of GL(2,q), q a
prime power. Then dl(G) < 4 and one of the following occurs: :

(a) G < Zgywr Zy;
(b) G <T(¢g*); or
(c) F(G) = QT where Qs 2 Q < G, T = Z(F(Q)) = Z(G) is cyclic,
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T < ZGL(2,q), TN Q = Z(Q) and GJF(G) = Z; or §5. Also
¢F 2. . ‘-

If G is quasi-primitive, then (b) or (c) must occur.

Proof. Suppose that the underlying module V is not primitive. Since
dimgpy V = 2, Lemma 2.8 yields that G < Z,_,wr 2, and dI(G) < 2.
Thus, by Clifford’s Theorem, we may assume that G is quasi-primitive. Let
A 4 G with A abelian. If Vy4 is irreducible, then G < T'(¢?), by Theorem
2.1, and so dI(G) < 2. We may thus assume that V4 =2 Vo @ Vp for a 1-
dimensional A-module V. Hence every abelian normal subgroup A of G is
cyclic of order dividing ¢ — 1, and central even in GL(2,¢). For the rest of
the proof we will as well assume that G £ I'(¢?).

We now apply Corollary 1.10 and let E, T, Z and F = F(G) be as in that
Corollary; in particular, E, T 4 G, F = ET and ENT = Z. By Lemma
2.10 (iv), 2 = dimg (V) = |E: Z|*/%, and hence Lemma 2.10 (iii) implies
that T < Z(GL(2,q)) and that E/Z is"a faithful completely reducible G/F-
module. Then clearly T = Z(F) = Z(G) is cyclic. Since the order of each
irreducible constituent of E/Z is a square and since |E/Z| = 4, B/7 is
irreducible and thus G/F = Z3 or S3. Now E = @ X Zy for an extra-
special group @ < G of order 8 and TN @ = Z(Q). Since @ admits an
automorphism of order 3, in fact () = Qs (see Proposition 1.1 (b)) and the
theorem follows, because dl(G) £4 and O4(G) =1. ]

If we replace 2 above by an odd prime, the same arguments apply. Fur-
thermore, we can use the above theorem to describe G/F(G). Much of the
reason to include 2.11, 2.12 and the rest of this section is to avoid repetitious
ad hoc arguments later. v

7

2.12 Theorem. Let G be a solvable irreducible subgroup of GL(p,q) for
a prime p and a prime power ¢. Then dI(G) < 6 and one of the following

occurs:

(a) G < ZygywrS where 2, <S<Z,-Z,.1 <5, and ¢ # 2;



(b) G <T(g"); or

(¢) F(G) = DT for an extra-special group D < G with |D| = p®, T
is cyclic with T < Z(GL(p,q)), TN D = Z(D), and D/Z(D) is a
faithful irreducible G/F(G)-module of order p*. Also ¢ # 2 and
G/F(G) < Sp(2,p) = SL(2,p). (Note that Theorem 2.11 applies to
the action of G/F(G) on D/Z(D).)

If G is quasi-primitive, conclusion (b) or (¢) must occur.

. Proof. If the underlying module V is not quasi-primitive, then we may
choose C' 4 G maximal such that Vi is not homogeneous. Thus G/C faith-
fully and primitively permutes the homogeneous components Vi,...,V,, of
Ve, m > 1 (see Proposition 0.2). Since dimgp(gy(V) = p is a prime, m =p
and dimc;p(q)(V,-)- = 1. Note that C # 1 and so ¢ = |V;| # 2. We apply
Lemma 2.8 and obtain that G < Z,_ywr(G/C). Since G/C is a solvable
primitive permutation group on p letters, Z, < G/C < Z,-Z,_1 < S, (see
[Hu, II, 3.6]). Conclusion (a) and dl{G) < 3 hold now and we thus assume

that V is quasi-primitive.

Let A 94 G with A abelian. By Theorem 2.1, we may assume that V4

is not irreducible, because otherwise G < T'(¢?) and dI(G) < 2. Since

: dilllGF(q)(V) = pis a prime, we have that V4 = p- U for an irreducible A-

module U and dimgp(q)(U) = 1. Therefore every normal abelian subgroup

A of G is cyclic of order dividing ¢ — 1, and is central even in GL(p,q). In
particular, q'# 2. .

To finish the proof we may assume that G % I'(¢?) and we proceed as in
Theorem 2.11. Thus we apply Corollary 1.10 and Lemma 2.10, and there
exist E, T, Z and F = F(G) such that E, T < G, F = ET, ENT = Z,p =
dimgpg)(V) = |E/2|*/?, T < Z(GL(p,q)) and E/Z is a faithful completely
_reducible G/F-module. Furthermore, there exists an extra-special group
D < G of order p* such that E = D x ZP: and DNT = Z({D). Also the
order of each irreducible constituent of E/Z & D/Z(D) is a square, and
since |[D/Z(D)| = p?, G/F acts faithfully, irreducibly and symplectically
on D/Z(D). As Theorem 2.11 applies to this action, we conclude that

oy

di(G) < dI(F)+ dI(G/F) 5'2 + 4 = 6 and the proof is complete. O

2.13 Corollary. Let G be a solvable irreducible subgroup of GL(p,q) for
primes p and q.
(a) If ¢ =2, then G < T'(2F).
(b) If ¢ = p, then G < I'(p?) or G < ZpywrS where Z, < 5 <
ZyZyoy < S,

Proof. Assertion (a) follows directly from Theorem 2.12. To prove asser-
tion (b), note that O,(G)=1 and hence case (c) of 2.12 cannot hold. O

2.14 Theorem. Let G be a solvable irreducible subgroup of GL(pr,2)
where p and r are primes not necessarily distinct. After possibly inter-

changing p and r, one of the following occurs:
(a) G <T(2?)wr S where Z, < S =Z,-Zr-1 < 5S¢
(b) G <I'(2r7); or
(¢) F(G) = DT with D, T 4 G, T = Z(F(G)) is cyclic, D is extra-
special of order p*, F(G)/T = D/Z(D) is a faithful irreducible
G /F(G)-module of order p*. Furthermore, |T|| 2" — 1 and p # 2.

In all cases, dl(é’) < 6. If G is quasi-primitive, then (b) or (c) must occur.

" Proof. Let V be the corresponding module of order 2?7, If V is not quasi-

primitive, choose C < G maximal such that V¢ is not homogenéous and

write Vo = Vi @ -.- @V, for | > 1 homogeneous components V; of Veo.

Since C # 1, |Vi| # 2 and 1 < dimgp(2)(Vi). Since p and r are primes
and ! - dimgpy)(Vi) = pr, we may assume without loss of generality that
dimgp)(Vi) = p and I = r. Now G/C faithfully and primitively per-
mutes the V; and hence G/C is isomorphic to a transitive subgroup of
Zr- 2,1 < Sy (see [Hu, 1T, 3.6]). If I = Ng(Vi), then V & V¢ and V, is an
irreducible I-module, by Clifford’s Theorem. Thus Corollary 2.13 applies,

ey
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and I/Cg(Vy) < T'(2?). By Lemma 2.8, conclusion (a) holds and dl(G) < 4.
We thus assume that G is quasi-primitive and also that G £ T'(27").

By Corollary 2.3, F = F(G) is non-abelian. Since char(V) = 2, F
has odd order. Also, every normal abelian subgroup of G is cyclic and so
T := Z(F) is a proper cyclic subgroup of F. By Corollaries 1.10 and 2.6,
|F/T| = € for an integer e > 1 dividing dimgp(2)(V)/ dimgp(2)(W), where
W is an irreducible T-submodule of V. Since T' # 1 and char (V) = 2,
dimgp()(W) > 1. But aimop(g)(V) = pr and we may assume without loss

of generality that dimgp)(W) = 7 and e = p. In particular, |T| l 2"—1land §

|F/T| = p*. Now Corollary 1.10 implies that there exists an extra-special
group D < G with |D| = p?, F = DT and D/Z(D) = F/T an irreducible
G-module. By Corollary 2.6, p = |D/Z(D)|'/? I dimgp2)(V)/ dimgp2)(Y)
for an irreducible Z(D)-module Y of V. Since Z(D) # 1, |Y| # 2 and
dimgp(2)(Y) > 1. Thus dimgp(gy(Y) = and

p=€c= dlmGF(g)(T/)/ dlmGF(z)(Y)

Apply Lemma 2.10 (ii) to obtain the faithful action of G/F on F/T. Finally
observe that dl(G) < 6 follows from Theorem 2.11. 4

2.15 Corollary. Let G be a solvable irreducible subgroup of Gt(2n,2)

with a prime number n. Then one of the following occurs:
(a) G <T(2™wr Zy, or G < Sywr S where Z,, < S < Zp - Zpy < Sy;
(b) G <T(2%); or

(c) n =3, F(G) is extra-special of order 3%, F(G)/Z(F(Q)) is a faithful

irreducible G/F(G)-module and |G /F(G)| is even, dividing 48.

If G is quasi-primitive, conclusion (b) or (c) must occur.

Proof. Theorem 2.14 applies with pr = 2n. Conclusions (a) and (b) above
are exactly those in that theorem. We may assume that conclusion (c)
of Theorem.2.14 holds. Because O,(G) = 1, we have that p = n and
7 = 2. Then p and [T| divide 3, whence F(G) is extra-special of order 33.
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Since F(G)/Z(F(QG)) is a faithful irreducible G/F(G)-module of order 3?
and [GL(2,3)| = 48, 2 | |G/F(G)| and |G/F(G) | 48. O

+

The final result we need about small solvable linear groups is rather

technical.

2.16 Lemma. Let G be a solvable irreducible subgroup of GL(2n, q) such '
that G/G' is a p-group for distinct primes p and g, and such that G' # 1 is
a p'-group. Then

(i) ¢™ #£ 2,22, 2" or 3.
(i) If ¢" = 23, then |G| =3%-7 and p = 3.
(iii) If ¢" = 2%, thenp =5 = |G: G'| and |G'| < 2° - 3°.
(iv) If " = 3%, thenp =2 and |G'| =5, or p = 5 = |G: G’f and G' is
extra-special of order 2°. )
(v) If ¢" = 3%, then p = 2 and |G'| divides 3*-13% or 7-13.
(vi) If n=1, thenp =2, orp =3 and G' = Qs.

Proof. Of course O,(G) =1 and so the hypotheses imply that O(G) # 1 for
some prime 7 ¢ {p,q}. Using Theorem 2.11, conclusion (vi) easily follows.
Since |G| is divisible by at least two primes distinct from ¢, ¢® # 2 or 3.
For the proof of (i)-(v), we thus assume that ¢ =2and 2 <n <5,0or ¢ =3
and 2 <n < 3. ' ‘

Suppose now that the corresponding G-module V is not quasi-primitive.
Choose C < G maximal such that V¢ is not homogeneous a.nd write Vg =
Uy ® - ®U,, for homogeneous components U; of V. By Proposition 0.2,
G/C faithfully and primitively permutes the U;, and so G/C is a solvable
primitive permutation group on m letters. Note that m | 2n and thus
2 < m < 10. For the structure of a solvable primitive permutation group,
cf. the comments following Theorem 2.1; in particular, m is a prime power.
There are limited possibilities for G/C. In each case, p is determined by the
fact that (G/C)/(G/C)" is a p-group. Since p # g and m \ 2n, we have one
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- of the [ollowing cases:

m G/C p q" Uil

2 Z9 2 3% or 33 32 or 3%
3 7 3 23 22

3 S3 2 33 32

4 Ay 3 22 or 2* 2 or 22
4 Sa 2 32 3

5 Zs ) 25 22

5 Dygor Fyy 2 no possibility —

8 7 7 24 2

We immed‘iately rule out the cases where |U;| = 2, since then ¢ = 1, a

contradiction. Next suppose {p,q} = {2,3}. In all such cases, G/C is a
{2, 3}-group. Thus |C| must be divisible by r (r 2> 5), and so there exists a
solvable irreducible subgroup H < GL(U;) with r l |H| and G < Hwr G/C.
This only occurs in the case [Uj] = 3%, ¢* = 3% and p = 2 = m. Then
H < T(38%) (cf. Corollary 2.13), G < I'(3%)wr Z, and conclusion (v) holds.
The remaining case is when m = 5 = p = |G/C| and |Ui| = 2%, Then
G < SywrZs and conclusion (iii) holds. We can thus assume that V is

" quasi-primitive.

For now, assume that G £ I(¢*"). If ¢" = 2% or 2%, then Corol-
lary 2.15 (c) implies that G is a {2,3}-group, contradicting O(G) # 1.
Since V is quasi-primitive, Corollary 1.10 applies and we adopt the notation
(F,T,U, A, Z) there. Set ¢* = |F/T|. We may assume that e > 1, since oth-
erwise G. < (V) by Corollary 2.3 (b). By Corollary 2.6, ¢ ‘ dim(V) = 2n.
Since e | |F|, ¢ does not divide e. Hence ¢" # 2% 2%, The only remaining
values now are ¢" = 3% and 3%. If W is an irreducible U-submodule of V,

then e | dim(V)/ dim(W) and |U] | W] — 1. Thus we have

Q" e W

33 2 3 or 3°
32 2 3 or 32
32 4 3.

When e; = 4, then |[U| = 2, and so T = U'= Z < Z(G). Also F is-

extra-special of order 2°. Since p # ¢ = 3 and 2 | IF(G")|, p > 5. As
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A = @G, the Sylow p-subgroup of G/F must act symplectically on F//Z. Now
ISp(4,2)] = 2% - 3% .5, and therefore p = 5 = |P|, where P € Syl;(@). Since
P and G/ F act irreducibly on F/Z, Corollary 2.15 yields that G/F < T'(2*%).
The hypotheses easily imply that |G/F| = 5, and conclusion (iv) holds.

Next assume that e = 2 and recall that ¢ = 3. Now |Z| | |U|, and |U]
divides 26 or 8. Since G/A < Aut(Z), since p # 3 and since G/G' is a
p-group, we must have that G/4 is a 2-group. Also A/F acts faithfully on
F/T of order 22. Consequently, A/F & S3 or Z3, and it follows that p = 2.
By our hypotheses, G has an abelian Sylow 2-subgroup. F however has

a non-abelian Sylow 2-subgroup, a contradiction. This rules out the case
e=2. ‘

Hence we finally assume that G < T'(¢®"). Since G’ # 1, we have that
1 # G/(GNTy(g®)) < T(¢?")/To(¢*") and p must divide 2n. This rules out
¢" = 2% and 2. When ¢" = 2% thenp = 5 = |G: G'| and |G'| < [[(x(2'%)] <
2% .35, as desired. If ¢" = 3% or 33, then certainly p = 2. Conclusions (iv)

and.(v) follow, since G' is a 2'-group.

What remains is that ¢® = 2° and p = 3. Now I'(2%) has a non-abelian

Sylow 3-subgroup of order 27. Since a Sylow 3-3ubgrohp of G is abelian,

3% 1|G|. To reach conclusion (ii) we may assume that G is non-abelian of

order 3-7. In characteristic 2, G has two absolutely irreducible faithful repre-
sentations, both of degree 3. But G = I'(2%) has a faithful representation of
degree 3 over G F(2), which must be absolutely irreducible. Thus G has two
faithful irreducible representations over GF(2) of degree 3, none of degree

6. Thus G cannot act irreducibly on V. This completes the proof. a

-

§3 Bounds for the Order and the Derived Length of

Linear Groups

Let ¢ be a prime. While the orders of GL(n, ¢) and its Sylow g-subgroups

are well-known (namely exponential functions of ¢™), the order of a solvable
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irreducible subgroup is considerably smaller. The Sylow g-subgroup e.g.
cannot act completely reducibly. Because a chief factor of a solvable group

G gives rise to a representation of G over a finite field, bounding the order

‘of a completely reducible subgroup of GL(n,q) proves to be a useful tool

on several occasions in this book. In fact, we give a cubic bound ¢*" for
solvable groups . But we start first with nilpotent linear groups. We let §
and T denote the sets of Fermat and Mersenne primes (respectively). The
notation (2,§) will denote the set of ordered pairs (2,q), ¢ € F.

We close this section by giving logarithmic bounds for the derived length
of solvable subgroups of S, and solvable completely reducible subgroups of
GL(n, F) (for arbitrary fields'F).

m

3.1 Proposition. Suppose ¢ — 1 = p™ for primes p and ¢ and positive

mtegersm and n. Then
(i)n——l g€EFandp=2;- (
(i1) m/:l,peimandq=2;or
(i) n=2,m=¢=3 andp=2.

Proof. This is well-known and not difficult. For a proof, see [HB\, IX,
2.7, : O

3.2 Proposition. Suppose that ¢™ — 1 =2".3 for a prime ¢ and positive

integers m and n. Then
(i) m=1;o0r
(i) m =2 and q € {5,7}.

Proof. Assume that m > 1 and observe that gisodd. Let t =14+q+4---+
g™ 1 so that ¢ ’ 2n.3. If m is odd, then ¢ is odd and so ¢ = 3 and ¢ = 2.
This is a contradiction and hence we write m =2k for an integer k. Then
27.3 = (¢ L1)(¢* +1). Since 41 (¢* -1, ¢¥ 4 1), since 2 # ¢* 41 and ¢ is
odd, it follows that 6 = ¢* + 1. Hence m = 2k = 2 and ¢ is 5 or 7. 0

S ey g g s By
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We set g =

We now turn to nilpotent linear groups over finite fields.

log(32)/log(9) and nofe that 3/2 < 1.57 <. < 1.58 < 8/5.

3.3 Theorem. Let V # 0 be a faithful, completely reduczb]e and finite
G-module for a nilpotent group G. Let char (V) = ¢ > 0. Then

(a) |Gl < |VIP/2;

(b) |G| < |V|/2 provided that G is apgr-oup and (p, q) ¢ (9, 2)U(2, F)U
{2,7}.

Proof. We work by induction on |G| |V]. IfV =V, ® --- @ V,, for non-
zero G-modules V; and m > 2, the inductive hypothesis implies that if
Ci = Cg(V3), then |G/C;| < |V;]P/2, and in part (b) that |G/Cy| < [Vi|/2
fori=1,..

G/Cy x

-ym. Since (; Ci = 1, G is isomorplic to a subgroup of

- x G/Cp. Then
G < HIG/Cil <[IilP ) <ivifrem < viP /e,

Similarly for part (b), we have |G| < |V|/2™ < |V|/2. Thus we may assume

that V is an irreducible G-module.

If G is not quasi-primitive, it follows from Corollary 0.3 that there exists
C 9 G of prime index p with Ve = V; @- - @V, for irreducible C-modules V;.
The argument in the last paragraph applied to C shows that [C| < |VI|B]2».
Thus |G| < p|V/|f/2P. Since 2°71 > & for all z > 2, |G| < |V|#/2. Similarly
for part (b), we have |G| < p|V[/2P < |V|/2. Thus we may assume that V
is quasi-primitive.

Every normal abelian subgroup of Gis cyclic. Since G is nilpotent, Corol-
lary 1.3 implies that G = § x T where T is cyclic of odd order and Sis a,
2-group that is cyclic, dihedral, quaternion or sémi-dihedral. In particular,
G has a cyclic normal sungoup U of index at most 2. If U has £ orbits on

V# . then [V|=1 = k-|U| because Vi is homogeneous. Since z3/2 —2z4+2 >0
for all z > 2, we have that [U| < |V| -1 < [V]P/2/2 < V|8 /2.
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To prove (a), v;/e assume that |G: U| = 2. Since z3/% — 4z +4 > 0 for all
‘z > 16, it follows that either |V| < 16, or

|G| <2)U| <2(|V]=1) <|VP22 < [VIP/2.

It remains to consider that |V| < 16, G is not cyclic and |V| is odd. But
then |V| = 3% and a nilpotent subgroup of GL(2,3) has order at most
16 = |V |#/2. This proves (a).

In case (b) we assume that G is a p-group, |U| = p™ and |V| = ¢™. Now
[V|-1=kU|l. Tk=1orif k =p =2, it follows from Proposition 3.1
that (p,q) € (2,F)U(9M,2). Thus k > 2. f U = G, then |G| = |U| < |V]/2.
If k > 4, then |G| < 2|U| < |V|/2. The only possibility then is k = 3 and
- |G: U] =2=p. Thus ¢™ ~1=|V|~1=3|U|=3-2". By Proposition 3.2,
g € {5,7} or m = 1. The hypotheses of (b) imply that m = 1. But then G
is cyclic and G = U, a contradiction. O

13.44 Corollary. Assume that G is a group of order p*q® for primes p and q
and a, b € N,

(a) Ifp* > ¢*#/2, then O,(G) # 1.
(b) If p* > ¢*/2 and (p,q) ¢ (M,2) U (2,F) U(2,7), then O,(G) # 1.

Proof. Assume that O,(G) = 1. By Burnside’s “well-known” p®¢®-Theo-
rem ([Hu, V, 7.3]), G is solvable. Hence O,(G)#1 and F(G)=0,(G)=:Q.
Then P € Syl,(G) acts faithfully on @ and thus on @/ ®(Q), because p # ¢.
Since Q/®(Q) is a completely reducible and faithful P-module, Theorem
3.3(a) yields |P| < |Q/®(Q)|?/2 < ¢*#/2. This proves part (a). Part (b)
follows analogously from Theorem 3.3(b). O

Part (b) is often referred to as Burnside’s “other” p®g®-Theorem, although
* Burnside omitted (p, ¢) 3 (2,7), which is necessary because 223 | |GL(8,7)|
Observe that both (a) and (b) are equivalent to number theoretical state-

ments about prime power divisors of (¢" —1)...(¢ —1). Coates, Dwan and
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Rose [CDR] corrected Burnside’s proof by giving a number theoretical ar-
gument for (b). A group theoretical proof of both (a) and (b) appeared in

[Wo 4], as did Theorem 3.5 (a), (b) below. The group theoretical approach
is much shorter.

We let a = (3-log(48)+log(24))/(3-1og(9)), i.e. 9 = 48-(24)!/3. Observe
~that 11/5 < 2.24 < & < 2.25 = 9/4. We also let A = (24)1/3 =2.31/3 < 3.

3.5 Theorem. Let V # 0 be a faithful, completely reducible and finite
G-module for a solvable group G. Set char (V) = ¢ > 0.

(a) Then |G| < |V|*/A.
(b) If21 |G| or if 31|G|, then |G| < [V|2/A.
(c) If21|G| and ¢ # 2, then |G| < |V|3/2/\.

Proof. We proceed by induction on |G[|V].
Step 1. We may assume that V is irreducible.

Proof. If not, write V=V, @ ... @ V,, for irreducible G-modules V; and set
Ci=Cg(Vi). Then );C; = Cg(V) =1 and G is isomorphic to a subgroup
of XyG/C;, whence |G| < T];|G/C;|. Then the inductive hypothesis for (a)
implies that [G/Ci| < |Vi|*/A and hence |G| < [V|*/A™ < [V|*/A. Parts
(b) and (c) follow similarly in this case.

Step 2. We may assume that V is quasi-primitive.

Proof. If not, we choose N < G maximal such that Vi is not homogeneous
and write Vy = U, @ --- @ U,, for the homogeneous components U; of Vy.
Then G/N faithfully and primitively permutes Uy, ..., U,, (see Proposition
0.2). Let M/N be a chief factor of G. Then [M/N| = m and M/N is a
faithful irreducible G/M-module (cf. the comments about primitive permu-

tation groups following Theorem 2.1). Using the inductive Liypothesis and

e
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the argument in Step 1, we have

VI=/A™

N[ < L IVIE/A™, 246G or 311G (31) 4

[VI/2/A™, if 21|G| and q # 2
and that /A

|G/M]| S{
A m?/\, if2¢|G|or 31]|G|

Thus
(mHA™)V/A

1G] < { mPAm) -V, iE211G] or 31(G]
(m3/A™) - [VIP2/x, if 2}|G] and ¢ # 2.

Since 3 < a + 1 < 10/3, we may assume that mlio/3 > Am o ie ml® >

(24)™. Thus 2 < m < 5. On the other hand, it suffices via inequality
(3.1) to show that |G/N| < Am=l I m = 2, 3 or 5, then G/N is a
solvable pr1m1t1ve permutation group of prime degree and [Hu 11, 3.6] yields
G/N < Z - Zne1 < Sm. Consequently, |G/N| < m(m —1) <A™~ LI ¢
m =4, then G/N <S4 and |G/N| <24 = A3. This step is complete.

Step 3. Set |V| = ¢". We may then assume that n > 2 and ¢" > 16.

Proof. First assume that |V| = ¢. Then
GL(V)| =g -1 < /3 |VP/A,

yielding (a) and (b). To prove (c) in this case, we assume that ¢ > 2 and let
S € Hally (GL(V)). Now |S| < ¢/2 < ¢*/?/3 < |V|*?/), and we are done
if [V]=gq.

If |V| = 4, then |GL(V)| = 6 < 4‘1/5/3 < |[V|*/A, and each Sylow
subgroup of GL(V) has order at most 3 < |[V|?/A. If |[V] = 8, then Corollary
2.13(a) implies that |G| < 21 < |V|2/\. We may thus assume that [V] = 9.
Then |GL(V)| = 48 = 9°/X = |[V[*/A. Furthermore, a Hall 2'-subgroup
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of GL(V) has order 3 < |V[*/2/), and a Hall 3'-subgroup has order 94 <
92/3 < |V|*/X. This step is proven.

Step 4. We may assume that
() G £ (g™
(1) n > 3;
(ii1) if ¢ = 2, then n > 8.

Proof. (i) Suppose that G < I'(¢™). Then |G| < ng". To prove (a) and
(b), we can assume that ng™ > ¢2"/) and thus 3n > ¢™ > 2" This can
only happen when ¢ = 2 and n < 3. But we handled these cases in Step 3.
To prove (c) here, we assume that ng" > ¢*"/?/X and thus 3n > ¢"/2. By
Step 3, n > 1 and so it follows that " = 32 52 3% or 31. A Hall 2'-subgroup
S of T(¢™) has order 1, 3, 39 or 5 (respectively) and |S| < ¢**/2/3. This
yields (i).

»(ii) Recall that n > 2. Suppose that n = 2 or 3. Since V is quasi-primitive
and G £ I'(¢™), it follows from Theorem 2.12 that G has normal subgroups
F =F(G) and T = Z(F) such that |T| | q—1, F/T is elementary abelian of
order n?, and F/T is a faithful irreducible symplectic G/F-InodL1lé. When
n = 3, note that |G/F| must be even. Thus in both cases n = 2 and n = 3,

|G| is even and part (c) vacuously holds. When n = 2, ¢ > 5 by Step 3, and
|Gl = |T||F/T|G/F| < (q—1)-4-6 <¢"/3< [V]*/A.
When n = 3, then
|G| = |T||F/T|IG/F| < (¢—1)-9-24 <216 ¢.

We have that ¢ # 2 by Step 3. Furthermore ¢ # 3, because O3(G) # 1.
Thus 216 < 5°/3 < ¢°/3 and |G| < [V[?/A.
J
(ili) We now assume that ¢ = 2,4 <n <7 and G £ I'(¢g"). By Corollary
2.13, n is not a prime. Since V is.quasi-primitive, Corollary 2.15 implies
that n = 6 and |G| < 3% .48 <2'%/3 < |V|?/\. This completes Step 4.



Step 5.- Conclusion.

" Proof. Since V is quasi-primitive, we may apply Corollary 1.10 to conclude
there exist normal subgroups I = F(G), Z, U, T, E and A with Z =
socle (U) = Z(E), U cyclic, |[T: U| <2, U=Cq(U), F=ET and ENT =
Z. Furthermore, FF < A = Cg(Z) and E/Z = F/T is a completely reducible
and faithful A/F-module of order e? for an integer e. Since V is quasi-
primitive, Vgy is a direct sum of ¢ > 1 isomorphic faithful irreducible EU-
modules. By Corollary 2.6, it follows that Vy 2 te- W where W is a faithful

irreducible U-module. Note that |U| | [W| — 1. By Step 4(i) and Corollary
2.3,e> 2. ‘

Since A = Cg(Z) and Z is cyclic, |G/A| < |Z] < |[U]. If T > U, then
|T: U| =2, |Z| is even and |G/A| < |Z|/2 <|U|/2. In all cases,
|G/A|T| < |UP.
If e = 2, then |G| is even and
|G| = |G/A|IT||A/F||F/T| < |U|*-6-4 < 24- V| < V3,

since [V| > 81 by Step 4 (ii), (iii). Sl}ould e = 3, then 3 | |F| and g # 3.
Also by Step 4, [V| > 256. Since |F/T| = 32, Corollary 1.10 implies that
F/T is an irreducible G/F-module. Thus 2 | |G/F| and 6 | |G|. Now
V] = W[ > UJ* and

|G| = |G/A||T||A/F||F/T| < |UJ*-48-9 <432 [V[*/* < |V]*/3,

" since |V| > 256. We may assume in the following that e > 4.

Because F'/T is a faithful completely reducible A/F-module of order

e? > 1, the inductive hypothesis implies that
€2 /)
/P < { etn i€31G]
i e*/X if2{|é|.

v oLy B EATC GO UL S G4
Since [U| < |W| and |G/A||T| < |UJ?, it follows that
62¢y+2 . |W|2//\
Gl< ] et Wi sl

S W /N i 211G
Recall that |V| = |[W]te.

To prove (c), we assume that |G||V| is odd and e®*|W|* > [V|3/2 >
[W|3¢/2. Then €' > |[W[**~*. Because |U| | W] =1 and |U||W]| is odd, it
follows that [W] > 7 and e'® > 7%¢~*. This implies e < 5, a contradiction,
because e is odd and e > 4. Part (c) follows.

We now prove (a) and (b). If (b) is false, then e$|W|2 > [W|2!¢ and
e > [wte , (3.2)

If (a) is false, then e®**2[W[* > [W|‘* and so (/@) . |w|te=(2/e),
Since « > 2, inequality (3.2) also holds in this case. Since |U| | W] -1,
we have that [W| > 3 and € > 3°7'. Thus e < 5. If e-= 5, then 5 | U]

cand [W] > 11. Now (3.2) gives a contradiction and hence e = 4. Then

2 | |U| and inequality (3.2) implies that |W| = 3, ¢t = 1 and [V| = 3%
Now T = U = Z has order 2 and F is extra-special of order 2°. Since
A =Cg(Z) =G, F/Z is a faithful completely reducible G/F-module. By
Corollary 1.10, F'/Z is irreducible or the direct sum of two irreducible G/F-
modules of order 22. Thus |G/F| divides 60 or 7 (see Corollary 2.15). If
|G/F'| <60, then |G| <60-2° < 3" =|V|?/3 < |V[?/\. Thus |G/F| =72,
6 | |G|, and |G| = 72- 2% < (3)11/5/3°< [V]*/A. 0

3.6 Corollary. Let G be a solvable primitive permutation group on the
finite set 0. Then |G| < (|Q*T1)/) < (|Q|13/4\)/2.

Proof. Let M be a minimal normal subgroup of G. Then |M| = |Q| and
G/M acts faithfully on M (cf. the comments following Theorem 2.1). By

Theorem 3.5, ‘ :

|G = [M]|G/M] < ]Q(|2]*/A),

ey

earmy
i
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and the assertion follows, since a < 9/4 and A > 2. O

Repeating some of Step § above, we have:

3.7 Corollary. Assume that every normal abelian subgroup of G is cyclic.
With the notation of Corollary 1.10, we have |G| < e'*/2|U|?/2.

Proof. By Corollary 1.10, G has a normal series
G>A>F>T>U> 2,

where U is cyclic, Z = socle (U), |T/U| <2 and A = C¢(Z). Thén |G/A| <
|Z| < |U|. If |T/U| = 2, then |Z| is even and |G/A| < |Z|/2. In all cases,
|G/A||T| < |UJ?. Since F/T has order e? and is a completely reducible
and faithful A/F-module, Theorem 3.5 implies that |A/F| < (e2)%/4/2.
Consequently, |G| = |G/A||T||A/F||F/T| < |[U[*e'*/? /2. O

3.8 Example. For each integer n > 0, there exists a vector space V,
over GF (3) and a solvable group G, such that Vn_is a faithful irreducible
Gp-module, dim(V,,) = 24", and |G,| = |V,,[*/A.

Proof. If W is a faithful irreducible H-module over a field F, we define
W*=WaoWeWeW and H* = Hwr §5. Then W* is a faithful irreducible
H*-module, dimx(W*) =4 - dimz(W) and |H*| = 24|H|[*. Observe that if
[H| = |W|/A, then |H*| = 24 - (|[W]¥/\)* = (24/X\3)|W|*e/X = |W*|*/\.
Of course, H* is solvable if and only if H is.

Let V4 have dimension 2 over GF'(3) and set Gy = GL(V). Then |Gy| =
48 = 9%/ = |Vg|/\. For n > 0, define iteratively V,, to be V,*_, and G, to

be G _y. The assertion follows from the first paragraph. O

Up to this point, the results of this section appeared in [Wo 4]. While

this example shows that the results of 3.5 and 3.6 are in some sense best
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possible, Palfy [Pl 1] has shown that the exponen‘t in Theorem 3.5 can be
improved for characteristic other than 3 and gives specific exponents for
specific characteristics. For maximal solvable subgroups of GL(n,q) which

are not necessarily completely reducible, see A. Mann [Ma 1].

Huppert [Hu 1] was the first to give a logarithmic bound for dl(G) and
Dixon “improved” it, i.e. Dixon gave a stronger bound, which has an error
and is too strong for linear groups, but is the correct order of magnitude.
Indeed it differs from below by a constant. After the proof, we will give

some examples and discuss the error in [Di 1].

3.9 Theorem. Let G be solvable.

(a) If G is a subgroup of the symunetric group S, then
dI(G) < £ logy(n). :

(b) Let V # 0 be a faithful and completely reducible F|G]-module over
an arbitrary field F. Set n = dimx(V). Then
dli(G) < 8+ $logs(n/8). ‘

Proof. The proof is by induction on |G|n, i.e. among all counterexamples

to the theorem choose one with |G|n minimal. For z > 0, we let

a(z)'= 3logy(x) and B(z) =8 + 2logs(z/8) = afz) + 8 — Slog,(8).
Note that a(z) + a(y) = a(ay) and a(z) + B(y) = B(zy).

First suppose that G is a subgroup of S, and let & = {1,...,n}. If Q
is the disjoint union of non-empty G-invariant subsets A; and Az, then let

Ci={geqG ‘ w? = w for all w € A;} 4 G. By the inductive hypothesis,
di(G/C;) < af|Ay]) for i = 1,2. Since C1 N Cy = 1, it follows that

dl(G) < max{a(]Ail) ' i=1,2} < a(n).
Hence we may assume that G acts transitively on 2.

If G acts imprimitively on §2, we may then write £ as a disjoint union

Q=0Q,U0...UQ,, with 1 < m < n for subsets Q; permuted by G. Let



LU LD Pt LA K GHOUULES See. d

N={geqG ' Q! = Q; for all i} 4 G. Then G/N transitively and faithfully
permutes the §; and so the inductive hypothesis implies that dI(G/N ) <
a(m). Now each ; is N-invariant and [Q;] = n/m for all 7, because G

transitively permutes the ;. As in last paragraph, it follows that dI(N) <
a(n/m) and altogether

di(G) < dI(G/N)+ dI(N) < a(m) + a(n/m) = a(n).

We can now assume that G acts primitively on .

Since G is a solvable primitive permutation group, G has a minimal nor-
mal subgroup M that is a faithful G/M-module and |Q| = [M]| = p' for a

_ prime p and integer . The inductive hypothesis implies that di{G/M) < B(1)
‘and thus

AUG) <1+ B(1) = 9+ all) — a(8) = a(3"/51/3).

Since a(z) is increasing, we have that dl(G) S o(p') = a(n) unless 3'8/51/8
> p! > 2!, This can only happen for those values of p' in the next table. In
each case, we may use Corollaries 2.13 and 2.15 or dI(GL(l,p)) to give an
upper bound for dI(G/M) and di(G) < 1+ dI(G/M). We use [z] to denote

greatest integer in z.

! max d(G/M) max di(G) [a(p")]
2 0 1 1
Jorb 1 2 2or3
2? 2 3 3
32 4 5 5
23 2 (Cor.2.13) 3 4
21 4 (Cor. 2.15) 5 6
28 2 (Cor. 2.13) 3 7

In all cases, dI(G) < a(p") = a(n). The result follows when G < S,.. |

We now assume that V is a faithful completely reducible F[G)-module of

dimension n. If K is any extension field of 7, then V ® £ K is a completely
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reducible and faithful X[G]-module of dimension n. Hence it involves no

loss of gencrality to assume that F is algebraically closed.

IfV =V, &V, for G-modules V; of dimension n; > 0, then each V,~.is
completely reducible and Cg(V;)N Cg(V2) = 1. By induction, we conclude

Cdl(G) < max{d(G/Cq(Vy))|i = 1,2} < max{f(n;)|i = 1,2} < B(n).

We thus assume that V' is an irreducible G-module.

If V is not quasi-primitive, we choose C' < G maximal such that V¢ is not
homogeneous and write Vo = V; @ --- @ V; for homogeneous components
Viof Ve, ¢ > 1. Now G/C transitively and faithfully permutes the V;.
Thus dimx(V;) = n/t for cach 7, and applying the inductive hypothesis
to the action of C'on V; @ --- @ Vi, we see as in the last paragraph that
dI(C) < B(n/t). We also apply induction to the permutation action of G/C

on {Vi,...,Vi} to conclude that dI{(G/C) < a(t). It follows altogether that
di(G) < dI(G/C) + dI(C) < a(t) + B(n/t) = B(n).

Thus we assume that V' is quasi-primitive.

Since F is algebraically closed and V is quasi-primitive, every normal
abelian subgroup of G is cyclic and central in G. Let F = F(G) and T =
Z(F) = Z(G). By Covollary 1.10, dl(F) < 2 and F/T is a completely
reducible and faithful G/F-module.” If F' = T, then G = F is abelian and
di{G) =1 < fB(n). We may thus assume that e > 1, and write F/T =
E\/T x -+ x E,,/T for m > 1 chief factors E;/T of G, with each |E;/T| =
p?k‘ for primes p; and integers k;. Let D; = Cg(E;/T) so that (), D; = F
and di(G/F) = max{dl(G/D;) | i=1,...,m}. Set e = Hipf‘ and observe
that e ’ n, by Corollary 2.6.

If p¥ = 2, then G/D; < S3 and dI(G/D;) < 2. If each pf‘ is 2, then
di(@) €4 < B(2) < Ble} < B(n). Thus some pf" is at least 3. If p = 3,
then G/D; < SL(2,3) and dI(G/D;) < 3, because G acts symplectically on

S

1

1

— 1 1



U3 BOUNDS FOR LINEAR GROUPS Sec. 3

E;/T. Thus if each pl' is at most 3, then dl(G) <5< [3(3) < ,B(e) < B(n).

Consequently, some p is at least 4.

We claim that for some j, pk’ 2 8 and k; > 2. Otherwise, for each

i, k; =1 or p = 22, Then Theorem 2.11 and Corollary 2.15 yield that

dl(G/D ) S 4forall 2. So di(G) < 6 < B(4) < < B(e). The claim follows and
e>p >8.

Each k; satisfies k; < log,(e) < e/2, because ¢ > 8. Thus dim(E;/T) =
2ki < e < n the inductive hypothesis yields that dl(G/D;) < B(2k;) for all
i. Set k = max{k; I t=1,...,m}. Then

dI(G) < dI(F) + dI(G/F) < 2+ (2k).
For k <2, dl(G) <2+ [8(4)] = 8 = #(8) < B(e). So k > 3 and

d(G) < 2+ B(2k) = a(3'/%) + f(2k) = B(2- 3%/5 . 1)

Since f is an increasing function of 2 and k < log,(e), we may assume that
235k > e and 2. 34/5 logy(e) > e. The latter inequality implies that
e < 24 and the first rules out the case k¥ = 3 and ¢ = 16. Since k > 3, the
only possibilities are e = pf‘ =2 ore= pf‘ = 2. In particular, F/T is
an rreducible G/F-module of order 26 or 28 (respectively). If ¢ = 8, then
Corollary 2.15 iwplies that the derived length of G/F is at most 6, and
therefore G has derived length at most 8 = B(e) < B(n).

We now have that 16 = ¢ < n and that F[T is a faithful irreducible

G/F-module of order 28. If F/T is an imprimitive G /F-module, then G/F
is isomorphic to a subgroup of S3 wr Sy or H wr Z, for a solvable irreducible
subgroup H of GL(4,2). In either case, di(G/F) < 5 by Corollary 2.15. By
Proposition 0.20 and Corollary 2.5, F(G/F) is abelian of odd order. If F/T
is primitive, then G/F < I'(2%) by Corollary 2.3. In all cases, dl(G/F) < 5.
Henee dl(G) <7 < f(e) < B(n). a

Suppose that G is a primitive linear group of dcgr(,e n and |F(G) :

Z(G)| = n?. It is incorrectly argued in [Di 1] (when n = 3 and more critically
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when n = 8, see p. 156) that G/E\‘(G) must have trivial center, whence the
G/F(G)-module F(G)/Z cannot be irreducible and primitive. Indeed, the
bound given in [Di 1] for a linear group of degree 8 is 7 = [2 log,(8) + 5/2],
not 8 as above. However, Glasby and Howlett [GH] have constructed a solv-
able irreducible G < GL(8,3) with dI(G) = 8 (even more G < Sp(8,3)). In
this group, F(Q) is extra-special of order 27 and F3(G)/F(G) = F(G/F(G))
is extra-special of order 3%. Also G/F3(G) & GL(2,3) acts faithfully and
irreducibly on F3(G)/L, where L/F(G) = Z(F,/F(G)) £ Z(G/F(G)).

3.10 Proposition. Let S be a solvable permutation group.on § (not nec-

essarily transitive ). Assume one of the following
(1) S is a primitive permutation group;
(i) dIi(S) < 2;
(iii) dl(S) =1 and SU~1) has odd order.
If H is solvable, then dl(HwrS) = dI(H) + dI(S).

Proof. Say S < S, and let G = HwrS. Then G has a normal subgroup
K = H x---x H, a direct product of n copies of H that are permuted by
S. Also G = KS and 1 = K N S. Clearly, d(G) < dI(K) + d(G/K) =
dI(H) + dI(S). If I = dI(S), it suffices to show d(GW) > dli(H). We may
assume that [ #£0, 1.e. §# 1.

Let M = SU=1 5o that M # 1 is an abelian normal subgroup of S.
Let 1 5 o € M and assume w.lo.g. that o(1) = 2. Let z = (A,1,...) €
K. Then [o,2] = o727 oz = (L7 1,...,1) and [o,2] € [K,M] C
[K,GU-D] € U=V N K. If welet II,: K — H be the projection map
from I to H relative to the first component, then II; ([I, M]) = H. Hence
dI(G') > dI([IK, M]) > dI(H). Thus we may assume S is non-abelian. Since
M acts non-trivially on the S-orbit {15} and since M < §', indeed |15| > 3.
We thus can assume 1° = {1,2,... ,m} for an integer m, 3 <m < n.

First suppose 7 € M and 7(2) = 3. Ifw = [o,z] = (h,h71,1, ... ,’1), then
w € GUYNK (asinthe last paragraph). Since r € G¢-1 [, w) € GONK.



Bub [7,w] = (+,%,h,...). Hence Iy(GW N K) = H and d(GW) > dl(11),
as desired. Thus 7(2) € {1,2} for all 7. In particular, {1,2} is an M-orbit
in {1,2,... ,m}. Since ¢ € M — {1} was chosen arbitrarily and since M
cannot have fixed points in the S-orbit {1,...,m}, we have that the M-
orbits of 1% are {1,2},{3,4},...,{m — 1,m}, after a possible relabelling.
Thus M/Cp(17) is a non-trivial elementary abelian 2-group.

If S is a primitive permutation group on Q, then M would be the unique
minimal normal subgroup of .S and act transitively on § (see discussion fol-
lowing Theorem 2.1). Since m > 3, .5 is not primitive by the last paragraph.
To complete the proof, we may assume that d‘],(S) = 2. Choose o € S with
(1) = 3. Then [a,z| = (h,1,h7",1,...) and [o,[a,z]] = (R, 71, %,...):
Since (o, [a,z]] € G" N K it follows that d(G"NK) > dl(H) and dI(G) =
2 4 dI(H). O

3.11 Examples. Let H be the semi-direct product of an elementary abelian
group E of order 9 and Aut(E) = GL(2,3). Then H is a permutation group

of degree 9 and derived length 5.

(a) Let Hy = H and iteratively define H; = H;_ywrH. Then H; is a
transitive permutation group of degree 97. By Proposition 3.10, di(H;) =
57 = —;—log3(9j). Hence the bound in Theorem 3.9 (a) is best possible for

infinitely mwmany n.

(b) Let Vp be a faithful irreducible Go-module with Gy solvable of derived
" length d. Let m = dim(Vg). Iteratively define V; and G; by letting V; be
" the direct sum of 9 copies of V;_; and letting G; = G;_ywrH. Then V; is
a faithful irreducible G;-module with dim(V;) = 9%m and di(G;} = d + 5i.
Thus dI(G;) = 3 logy(dim(V;)) + d — 2 logy(m). This shows that the bound
2 logz(n) + 8 — $logy(8) is a best bound or nearly so in each characteristic,
~ l.e.in a given characteristic, it may be possible to lower the additive constant
- (8= 2 log,(8) = 3.268), but the cocfficient of log(n) cannot be reduced and
the additive constant still must be non-negative. Also, to see the bound

is obtained for infinitely many ¢ in some characteristic, it suflices to find a

;

linear group of degree 8 and derived length 8. We refer the reader to the

discussion preceding Proposition 3.10.

The following is a little weaker than Theorem 3.9, but sometimes more

convenient.

3.12 Corollary. Let G be solvable.

(a) If G < Sy, then dI(G) < 2log,(n).

(b) If V % 0 is a faithful and completely reducible G-module over an
arbitrary field F, then dl(G) < 2log,(2n).

Proof. Since 2log;(z) < 2logy(x) for all z > 1, part (a) is immediate.
Observe that 8 4 2logy(z/8) < 2logy(2) for all.z > 8. For 2 <n <7, the
greatest integer in 8 + 2 logs(n/8) is the same as that in 2log,(2n). So it

remains to verify (b) when n =1 and this is trivial. O

3.13 Remark. We have gi;/en polynomial bounds for the order of a Sy-
low p-subgroup of GL(n,q) for p # ¢ (Theorem 3.3) and also for solvable
completely reducible subgroups of GL(n,¢) (in Theorem 3.5). Since the
order of a Sylow g-subgroup Q of GL(n,q) is ¢"("1/2  its order is not a
polynomial function of ¢". Of course, () does not act completely reducibly.
These bounds also show @ cannot be a subgroup of a completely reducible
solvable subgroup of GL(n,q). That can also be deduced from Theorem 3.9.
Actually, if ¢™ is the order of a Sylow g-subgroup of a completely reducible

g-solvable subgroup of GL(n, q), then m < n. In [Wo 5], it is shown that

msg[ﬁ—%—)zﬁ]snkpfl);_pil

and

2 [n -1 . . .
m < Z — | < n if p is not a Fermat prime.
- i=1 P’ p-1

(Here [ | denotes the greatest integer function). These bounds are in some

sense best possible.
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There are some interesting consequences of the bounds just mentioned.
Suppose that G is p-solvable with p—leﬁgth l'and p-rank r. (The p-rank of
G is the largest integer r such that P’ is the order of a chief factor of G.)
Also, let p® be the order of a Sylow p-subgroup. Then

i) 1is bounded above by a logarithmic function of b.
ii) [ is bounded above by a logarithmic function of r.

Proofs are given in Theorems 2.2 and 2.3 of [Wo 5]. The bounds, which
are in some sense best possible, are slightly weaker for Fermat primes. The

bounds for [ in terms of r are stated below in Remark 14.12 (a).

i
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Chapter 11
SOLVABLE PERMUTATION GROUPS

§4  Orbit Sizes of p-Groups and the Existence of
Regular Orbits

Let G be a permutation group on a finite set Q. The orbit {w? I g € G}
is called regular, if Cg(w) =1 holds.

In this section we consider a finite p-group P which acts faithfully and
irreducibly on a finite vector space V of characteristic q # p. For several
questions in representation theory, it turns out to be helpful if one knows
that P has along orbit (preferably a regular orbit) in its permutation action

on V. For applications, see §14.
We start with an easy, but useful, lemma.

4.1 Lemma. Let G act on a vector space V over GF(q), and let A # 0 be
an orbit of G on V. If A € GF(q)#, then AA # A or o()) | exp(G).

Proof. Let AA = A. Then, for v € A, there exists ¢ € G such that
v =vg. If n = o(g), then v = vg™ = vA™ and o(}) I n. O

We recall that § and 2 denote the set of Fermat and Mersenne primes,

respectively.

4.2 Lemma. Let P be a non-trivial p-group and V a faitllftlj, irreducible
and primitive P-module over GF(q) for a prime q # p. Set |P| = p™ and
V| =qm.

(a) There always is a regular orbit of P on V', except the case where



{3

(p,q) € (2,9) and P is dihedral or semi-dihedral. In this exceptional

case, clearly P has Dg = Zywr Z, as a subgroup.

(b) If(p,q) ¢ (2,9)U(2,F)U(IM, 2), there even exist two regular orbits.

(c) In any case there are vy, vy € V such that Cp(v,) N Cp(ve) = 1. -

Proof. Since P acts primitively on V, every normal abelian subgroup of P

is cyclic. Hence Corollary 1.3 implies that P is cyclic, quaternion, dihedral

or semi-dihedral. In particular, P has'a cyclic normal subgroup Z of index
-1 or 2. Every subgroup of Z is normal in P and so Cz(v) = 1 for all
0#v €V, e every Z-orbit on V — {0} is regular. Also |Cp(v)| < 2 for all
- v €V — {0} and part (c) easily follows.

To show that (a) implies (b), we may assume that P has exactly one
regular orbit A in V. If ) is a generator for GF(q)#, then AA is also a
regular orbit and so AA = A. By Lemma 4.1, ¢-— 1 = o()) = p’ for some
7. By Proposition 3.1 and our assumption on (p, ¢), the only possibility is
g =2, podd. But then P = Z has only one orbit on V# and ¢™ — 1 :l|P|,
* contradicting Proposition 3.1. Hence (a) iinplies (b).

It remains to prove (a). We thus assume that P has no regular orbits,

‘P> Z,and p =2 = |Cp(v)] for all v € V#, Thus P = ZCp(v) for

- all v € V and each Z-invariant subspace of V' is indeed P-invariant, i.e.

'V is irreducible. Also, P cannot have a unique involution, whence P is
dihedral or semi-dihedral. An easy counting argument shows P has 2™~!
or 2" % involutions outside Z (respectively). (Definitions of dihedral and’

semi-dihedral appear in the proof of Proposition 1.1). We need to show
g € M.

Since now Vz is irreducible, P acts semi-linearly on V = GF(qg'"’),
where m = 2m' by Theorem 2.1. More precisely, we have with Z = (z) and
g€ P\ Z that

vz=av and vg= bvqm'(a,b € GF((IQm,)#)-

{3
In particular, g> = 1 if and only if bb9™ = 1. This enables us to count

the number of fixed-points of g on V# (and hence of all involutions outside

Z). Namely vy # 0 is a fixed-point of ¢ if and only if vo = bvg , ie.

m'

Yn' . . ! 3 3 9 3 -
o™ 71 = b1, Since b’ = 1, this equation has ¢™ —1 solutions vy
K = .

GF(q2m' )#

Siiice |Cp(v)| = 2 holds for all 0 # v € V, and since Z acts fixed-point--

freely on V, counting of the set
{(v,i) | v € V*#, i involution in P\ Z, i € Cp(v)}

yields s - (q'”' —-1)y= @™ =1, ie. q™ +1=sis apower of 2. Thus ¢ € m
(Proposition 3.1). . O

In view of §7, the following lemma is stated in a more general version

than needed in this section.

4.3 Lemma. Let P be a p-group and V a faithful P-module over GF(q)
for a prime q (possibly ¢ = p). Suppose that V = V@ - -0V, for subspaces
Vi#0 of V that are permuted by P (not necessarily transitively). Assume
that Np(V;)/Cp(Vi) has at least k regular orbits for an integer k € N

(i = 1,...,m). Then P has at lcast k regular orbits on V, unless
(i) k=1,and g=2or(p,q) € (2,5); or
(“) k=2, and (p,q) € (2,5 U {2})

Proof. We proceed by induction on dimgp(q)(V) and assume without loss
of generality that m > 1. If P has more than one orbit on {Vy,...,Vn},
we may write V = U, @ U, for P-invariant subspaces Uj, each of which is
a sum of some V;’s. We apply the inductive hypothesis to the action of
P/Cp(U;) on U; (i = 1,2). If the exceptional case occurs for at least one
i € {1,2}, we are clearly done. Hence there exist z1,...,zx € Uy belonging
to k distinct regular orbits of P/Cp(Ui) and y1,...,yk € U, belonging to k
distinct regular orbits of P/Cp(U,). Now

Cp((zi,y;)) = Cp(U) N Cp(U2) =1

oo

]
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and (z;,y;) € V generates a regular P-orbit for all 7, j. Note that (z;,y;)
is conjugate to (zx,y:) if and only if ¢ = k and j = I. Thus P has at least
k% > k distinct regular orbits on V.

We thus assume that P transitively permutes the V;. Let N < P such
that N > Np(V;) and |P/N| = p. Then Vy = W1 & --- ® W, for N-
invariant subspaces /_W,- that are transitively permuted by P/N. Observe
that Np(V;) < N and Np(V;) = Ny(V;) for all i. As in the intransitive
case we may assume by induction that N/Cy(W;) has at least k regular
orbits on W; (i = 1,...,p). Let &; contain one element of W; from each
regular orbit. Then I := |&;| > k 'and 6 :=86; x - x &, contains [P > k»
elements. Pick y € &, say y = (wy,...,w,). Assume that [ > 2 and choose
y # z € 6 with z = (u1,ws,...,wp). We claim that y or z is in a regular
P-orbit. Since both y and z belong to regular N-orbits, we can assume that
Cp(y) and Cp(z) have order p and complement N. Choose a € Cp(y) and
b € Cp(z) with o(a) = o(b) = p and Na = Nb. Then a and b induce the
same non-trivial permutation on {Wy,...,W,} and hence there exists j > 1
such that w{ = w; and ub = w;. Then wi‘b—l = uy. Since ab™! € N, w,
and u; are N-conjugate, contradicting our choice of y, z € &. Thus y or z
generates a regular P-orbit. Consequently, at most one ¢lement of the form
(v, wa,...

[P —1P=1 = (1—-1)I*~! elements of & lie in regular P-orbits. No two elements

,Wp), v € &1, is not in a regular P-conjugacy class. Hence at least

of G are N-conjugate, but they may be P-conjugate. Hence there exist at
least (I —1)IP~1/p distinct regular P-orbits in V. Should (k—1)k?~!/p > k,
the conclusion follows, because | > k. We thus assume that (k—1)k? 7% < p,
i.e. either k=1, 0or k=2 and p <3.

Assume that k =2 and p = 3 and let {u;,w;} € &; (1 =1,2,3). We can

find an element (w;,w;,w3) € G which is not in a regular P-orbit, since

otherwise P has at least 28/3 > 2 regular orbits. The argument in the last
paragraph now shows that (u1,w2,103), (w1, uz,w;3) and (w), w2, u3) all lie
in regular P-orbits. If there are four elements of G in regular P-orbits, then

there are at least 4/3 and in fact two regular orbits. Hence (ug,uq,u3) and
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(u1,uq,w3) are both not in regular P-orbits, contradicting the argument of

the last paragraph. Therefore k =1, or k=p=2.

Let A generate the multiplicative group GF(g)*. If k =p = 2, the
argument in the next to last paragraph shows that (u;,us) or (wy,uq) lies in
a regular P-orbit. Say (ui,uz)isina regular P-orbit. Then so is (Aut, Aug)
and hence we may assume that (Auj, Aug) is P-conjugate to (uy,uz). By
Lemma 4.1, ¢ — 1 = o(\) = p’ = 2 for some j. Hence g € Fu{2}. We
may now assume that k = 1 and N/Cy(W1) has exactly one regular orbitj,
on W. If w, € Gy, then Awy Is N-co_njugate to w; and so' g —1 = o(A) = p’
for some j. Thus ¢ =2 or (p,q) € (2,F).. a

4.4 Theorem. Suppose that the p-group P acts irreducibly and fa.ithquy
on the G F(q)-vector space V of coprime characteristic ¢. If (p,q) ¢ (2,M)U
(2,%) U (9,2), then P induces at least two regular orbits on V.

Proof. If P acts primitively on V, apply Lemma 4.2 (b). If not, we may
choose N < P of index p such that Vy = Vi @V, for irreducible
N-modules Vi which are transitively permuted by P (see Corollary 0.3).
By induction, Np(V;)/Cp(V;) = N/Cn(V;) has at least two regular orbits
on Vi (i = 1,...,p). Thus the result follows by induction from Lemma

4.3. . a

The following examples show that in the exceptional cases of Theorem

4.4 regular orbits need not exist.

4.5 Examples. (a) Let (p,q) € (M,2) and set p = 2f —1 > 3. We consider
P = Z,wr Z, and denote by U = GF(2f) the f-dimensional module over
GF(2) on which Z, = GF(20)# acts fixed-point-freely. We view U asa
module for the base-group Z, x --+ X Z, I P, where the first component
acts as above and where the others centralize U. Then V := UP is a faithful

irreducible P-module. But since

Pl=pt' > (pr1)—1=2"7P-1=|V|-1,



P has no regular orbit on V.

(b) We now consider (p,q) € (2,5) where ¢ = 2/ +1 > 3. Let P =
Zqswr Zy and denote by U = GF(q) the 1-dimensional module over GF(q)
on which Z,; = GF(q)* acts fixed-point-freely. As above we view U as a
module for Z,; x Zyy < P. Then V := UP is a faithful and irreducible

P-module. If ¢ > 3, then P has no regular orbit, because
[Pl =2 =2(¢-1)*>¢*—1=|V| - L

If ¢ = 3, then |V| = 9 and |P| = 8. In this case, a regular orbit must be the
only non-trivial orbit. But (z,0) is not in a regular orbit (z # 0), and so P
has no regular orbit.

(c) Let finally (p,q) € (2,M), ¢ = 2f —1 > 3. Set V = GF(q?), take
aeV of order o(a) = ¢+ 1 = 2/ and consider P = (a,b) < I'(¢?) such that
P acts on V via a: v+ av, b: v v7. But now for each vy € V#, there is

1

some j such that v~ = a™7. This however means that voba’ = a’v{ = vy,

and P has no regular orbit on V.

In the exceptional cases of Theorem 4.4 we show that there at least exists
an orbit of size greater or equal to /| P|.

4.6 Lemma. Let P be a p-group which acts faithfully on a vector space V
over GF(q) for a prime ¢ (not necessarily different from p). Suppose that
V=V,®- - @V, for subspaces V; # 0 that are permuted by P (possibly
intransitively). Assume that for each i, there exist u;, v; € V; silch that
© Crevyy(ui) N Crqyy(vi) = Cnqvy(Vi). If p > 2 assume in addition that u;
and v; are not conjugate in Np(V;). Then there exist u, v € V such that
Cp(u)n Cp(vj = 1. If p > 2, then v and v may be chosen so as not to be

P-conjugate.

Proof. We proceed by induction on dimgp(g)(V) and assume m > 1. If P
has more than one orbit on {Vi,..., Vin}, the argument is similar to the one

in the proof.of Lemma 4.3 and we omit details.

Thus there exists Np(V;) € N < P with |[P/N| = p such that V =
Wi @®---@®W, for N-invariant subspaces W; that are transitively perﬁmted
by P/N. Also there exist =, yi € Wi (t = 1,...,p) such that Cn(z:) N
Cn(y;) = Cn(W;). For p > 2, we may assume that x; and y; are not
conjugate in N. For g € P, we have that 2!, y! € W/ and hence that
Cn(z?) N Cn(y!) = Cn(W/). Since P transitively permutes the W;, we
may assume that z1,22,...,%;, are all P-conjugate and y1,y2,---,yp are all

P-conjugate.

Consider first' the case p > 2. If z; is P-conjugate to some yj, then
also z¢ = y; for some g € P. This however implies ¢ € Np(W;) = N, a
contradiction to the choice of z; and y;. Hence x; is never P-conjugate to
any y;. Let z = (1,92, ¥Yp)s ¥ = (v1,%2,...,2p) € V. Then Cp(z) <N
and Cp(y) < N. Hence

Cp(z)NCp(y) = Cn(z) N Cn(y)

(Cn(z)NCn()) =) Cn(Wi) =1.

1 i=1 '

-

1

If z and y are P-conjugate, say z" =y, then y2, y* e {y1,29,...,7p} and

y} =y, = y3, a contradiction. We are done if p > 2.

Let p = 2. Now
Cn((z1,22)) N CN((y1,¥2)) = 1 = Cn((z1,¥2)) N Cn((y1,22)).
We may thus assume that
Cp((z1,22)) N Cp((y1,¥2)) = (@) and  Cp((z1,2)) N Cr((y1,72)) = (b)

for involutions a, b € P\N. Now z{ = z2, y§ = y2, 2 =ys and yb = z,. Set

s = ab € N. Then s? fixes all z; and y; and s? =1. Since 2 = y1, z1 and y;

" are conjugate by an involution s € N. If z; and y; are linearly dependent,

say y1 € (z,), then also y, € (z2) by conjugation. In this case, z; is in a
regular orbit of N/Cn(W;), 2 = 1,2, Thus Cn((z1,22)) = 1, and without
loss of generality Cp((x1,22)) = (¢) for an involution ¢ € P. Choose v € V

=

A
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not centralized by ¢ and note that Cp(v) N Cp((z1,z7)) = 1. Thus the

assertion holds and we may assume that z; and y; are linearly independent.

Now {z1,y1} and {z; —‘yl,yl} generate the same 2-dimensional subspace
of W;. Hence

Cn(r1 —y1) N Cn(y1) = Cn(z1) N Cn(y1) = Cn(Wh).

Replacing x; by z; — y; in the above argument, there exists an involution
t € N conjugating z1 — y; and y;. Now ¢}' = y! =z, —y; and y* = 2! =

(1 —v1)+w) =y + (x1 —v1) = z;. A matrix for st restricted to the
subspace generated by {z1,y;} thus is (_11 é), which has order 6. This

is a contradiction, because P is a 2-group. O

4.7 Theorem. Suppose that the p-group P acts irreducibly and faithfully
on the G F(q)-vector space V of coprime characteristic q. Then there always
are two vectors vy, vy € V such that Cp(vy) N Cp(vy) = 1. In particular,
|P: Cp(vi)| > \/|P| fori =1 or 2. '

Proof. Assume at first that p > 2. We show that we can even find such
vectors vy, vy in different orbits. If P is primitive, then Pis cyclic and thus
has a regular orbit {v{ |Ag € P}. Take v; and vy = 0. If P is imprimitive,
apply induction and Lemma 4.6.

When p = 2, the primitive case follows from Lemma 4.2(c) and the

imprimitive case follows via induction and Lemma 4.6. O

We give another criterion for the existence of regular orbits. It should
be clear that the hypothesis of the following theorem is rather difficult to

check explicitly. But since Z,wr Z, has class p, it is certainly satisfied if P
has class less than p.

4.8 Theorem. Suppose that the p-group P acts irreducibly and faithfully

on a GF(q)-vector space V of coprime characteristic q. If P does not involve
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;
a section isomorphic to Z,wr Z,, then P has a regular orbit in its action on

V.

Proof. By Lemma 4.2 (a), we may assume that P is imprimitive. By
Corollary 0.3, there exists N < P with |P: N| = p such that Vy = V1 ®
--- @V, for irreducible N-modules V; which are transitively permuted by P.
Since N/Cn(V1) involves no section isomorphic to Z,wr Z,, the inductive
hypothesis yields the existence of a vector u € Vl# such that Cy(u) =
Cn(Vy). Let g € P\ N, hence g7 € N. Without loss of generality, we may
assume that g cyclically permutes the spaces Vi,...,V,. We now consider

the vector v = (u,u?,.. .,u”p—l) € V. Since
p—1 ) p—1
Cw(v) = [} Cnl(w)” =[] Cn(V5) = Cn(V) =1,
j=0 §=0

it remains to assume that |Cp(v)| = p. Replacing g by a generator of C p(v),
we may also assume that g? =1. Suppose now that even ﬂf;ll Cn(Vj)=1
and let w = (0,u?,...,u” ') € V. Then

r-1 S
Cp(w) = Cy(w) = ﬂ Cn(u)? = DCN(V,) =1

Thus w generates a regular P-orbit and we may take 1 # vy € ﬂ};;l Cn(V;)

"with y» = 1. Let A be a matrix representation of the action of y on Vj, and

let E denote the identity matrix of rank dim (V;). Then y induces the map
(AE,...,E)on Vy =V1 @---®V,. Consequently, Z,wrZ, = (y,g) < P
and the proof is complete. O

It is not hard to extend Theorems 4.4 and 4.8 to nilpotent operator
groups. For this and also other related results we refer the reader to T.
Berger [Be 1], P. Fleischmann [Fl 1], R. Gow [Go 1], D. Passman [Pa 1],
and B. Huppert & O. Manz [HM 2]. The step towards supersolvable groups

however is much more delicate.

4.9 Remark. Let TI'(p™) be a semi-linear group as defined in §2 . For
q | m, let S be the unique subgroup of Gal(Gf(p™)) of order q. In the



group Ty(p™) of multiplications, we define the g-norm-1 subgroup N(p™, q)

by
N(p™ ) = {z € Tolp™) | [[ 2" = 1).

oc€S

Set G(p™,q) = N(p™,q)-S. Then the following theorem holds (A. Turull
[Tu 1]). Let G be a supersolvable group which acts faithfully and completely
reducibly on a GF(p)-vector space W. Suppose that G involves no section

isomorphic to
(1) Z,wr Z, for primes r, s, or
(2) N‘(pqe,q) for a positive integer e and a prime q.

Then G has a regular orbit on W.

The main difficulties in proving regular orbit theorems arise when the

action 1s imprimitive. Quasi-primitive solvable groups however are easier to

handle, as we shall see now.

' 4.10 Proposition. Suppose that the solvable group G acts faithfully and
quasi-primitively on a finite vector space V. Therefore, every normal abelian
subgroup of G is cyclic and we adopt the notations of Corollary 1.10. If
e > 118, then G has at least two regular orbits on V.

Proof. (a) We first show that |Cy(g)| < |[V[*/4 for all ¢ € G#, and freely
use the assertions of Corollary 1.10.
(1) If g € U#, then Cy(g) = 1, since the cyclic group U acts fixed-
point-freely on V.

(2) If g € T\ U, then l[g,u] € U# for some u € U. Observe that
ICv(9)l = Cv(g7 ") = ICv(¢9*)| and Cy(g7") N Cy(g*) <
Cv(lg,u]). Now Cy([g,u]) =1 (by (1)) and therefore
V] >|Cv(g™")- Cv(g")| = |Cv(g)|?, which yields the claim.

(3) If g € F\ T, then there exists z € F such that [g,;'c] € Z#. By (1),

Cv(lg,z]) = 1 and the same argument as in (2) yields |Cy(g)| <
|V|]/2~ .

i i

(4) Let g € A\ F. Then there exists 2 € E such that [¢,z] € E\ Z. By
(3) we know that |Cy([g,z])] < |V|'/2. Consequently

ICv(9)I* = Cv(g™)I- ICv(¢™)|
<ICv(g™) - Crvlg®)l- ICv(lg,el)l S IVI- VT2 = VP72,

(5) Finally if ¢ € G\ A, there exists z € Z such that [g,2] € Z#. By
(1), Cv([g,2]) = 1 and |Cy(g)| < |V|/2.

(b) Any v € V not contained in (J,cg# Cv(g) must necessarily lie in a

regular G-orbit. If G does not have two regular orbits, then (a) implies

(GI=1)- [VP* > S~ [Cy(g)l = [V -|G].
geEGH#
Let W be an irreducible submodule of V. By Corollary 2.6, [V| > |W|¢

where ¢ is as in Corollary 1.10. We thus obtain
Gl 2> (IVI+ VIV + 1) > [V 2w/,

But by Corollary 3.7, |G| < eV¥/2|UJ*/2 < 613/2|W|2/I2. It follows that
el3/2 > 2. |W /4 /|W |2 = 2.|W (/472 and then €?® > 2*.|W|*~8 > 24.3°78,
Therefore, e < 118. ]

With some more care, the existence. of regular orbits can certainly be
established also for smaller values of e. A. Espuelas [Es 3] has shown that
whenever |G| is odd and e > 1, then there exist two regular orbits on the

quasi-primitive module V of odd characteristic.

4.11 Remark. Suppose that G acts faithfully and coprimely on a solv-
able group H. Since F(HG) = F(H), G also acts faithfully on F(H) and

_then even on F(H)/®(F(H)) =: V. We decompose V = V1 & --- @V,

into irreducible G-modules (possibly of different characteristic). Suppose
G/Cg(V;) all have regular orbits on V;, say generated by v; € V;. Then
v = vy + - - + v, generates a regular orbit of G on V. Thus thereis h € H
such that Cg(h) =1, i.e. h generates a regular G-orbit on H.

[
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§5 Solvable Permutation Groups and the Existence of

¢
Regular Orbits on the Power Set

When investigating a permutation group G on a finite set 2, one can as
well consider the induced action of G on the power set P(Q2) of Q. The
question we are concerned with in this section is whether G has a regular
orbit on P(Q), i.e. whether there exists a subset A C Q such that the setwise
stabilizer stabg(A) of A is trivial. As the examples of the symmetric and
alternating groups show, one cannot expect this to be true in general. For

primitive solvable permutation groups, however D. Gluck [Gl 1] has given a

complete answer.

In the following we use the structure of primitive solvable permutation
groups stated in comments following Theorem 2.1. Let S denote a point _
stabilizer and V' the unique minimal normal subgroup of G. Thus || =
|[V| = p™ for a prime p and m € N. To obtain certain consequences, in
fact a slightly stronger question will be considered, namely whether there
is A C Q, |A] # 19]/2, such that stabg(A) = 1. We call such an orbit
a strongly regular orbit. Clearly for p > 2, each regular orbit is strongly
régular. We denote by n(g) the number of cycles of g € G on 2, and by
s(g) the number of fixed points.

For 5.1 to 5.5, we assume that G is a solvable primitive permutation

group on {2

5.1 Lemma. If ¢ € G#, then n(g) < (|| + s(9))/2 < (p + 1)|]/(2p) <
3|/4.

Proof. If s(g) = 0, we clearly have n(g) < |92|/2. We thus may assume that
g has fixed points, and without loss of generality ¢ € S. Since the actions of
S on V and Q are permutation isomorphic, it follows that s(g) = |Cy(g)],
and since S acts faithfully on V, s(g) ] V|/p = |9|/p. Therefore

n(g) < s(a)+ (9 —s(a))/2= (120 +5(9))/2 < (p+ DI/ (2p) <3|QY/4. T
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For a subset X C @, it is worthwhile to consider in the following the set
T(X)={(9,A) |ge X, ACQ, g €stabg(A)}.
By an easy counting argument, which in turn relies on bounds for the order

of linear solvable groups, we are left with only finitely many cases.

5.2 Proposition. If || > 81, then G has a strongly regular orbit on the
power set P(N2).

. Proof. Note that g € G stabilizes exactly 2™(9) subsets of Q2. Consequently,

Corollary 3.6 and Lemma 5.1 imply
IT(G#)| < (1/2) - [Q3/4 . 2312174,

Since |P(Q)| = 21?1, we certainly find a regular orbit of G on P(R2), provided
that

(1/2) - [Q)13/4 . 2318/1 < 9l0

or equivalently
13 - log,(|19]) < 9] + 4.

One easily checks that this holds for || > 81.

In order to prove the existence of a strongly regular orbit, we may there-

fore assume that |Q| is a 2-power greater than or equal to 128 = 27. First

m m m .
observe that (m/?) < (m/2 n 1) + <m/2 __ 1) for an even number
m € N. Thus the number of subsets of { of cardinality different from [|Q2]/2,

which equals 2% — (|S|)§|2/I2)’ is greater -than or equal to 2/%~1. Hence we

get as our condition for the existence of a strongly regular orbit
(1/2) X IQ'13/4 X 23|Q|/4 < 2[Q|—1,

or equivalently 13 - log,(|©2]) < |©2|. This holds for |©2] > 128. ]

Rather easy to handle is also the case where || = p is a prime.
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5.3 Lemma. Suppose that Q)] = p is a prime number. Then G has no
- regular orbit on P(§Y) if and only if p=3, 5, 5 or 7 and G is isomorphic to
the Frobenius group Fy, Fyo, Fyo or Fys (respectively).

© Proof. If G =V is cyclic of order p, then any one-point subset of  gen-
erates a regular orbit of G on P(2). Therefore we may assume that G
is a Frobenius group with kernel V and complement S # 1; in particular
|| I p—1 and p > 3. Recall the permutation isomorphism between © and
"V (where S acts on V by conjugation).

Let T be a subgroup of G of prime order ¢ which has a fixed point on
PB(Q). Then T is contained in some conjugate of S, and 7" fixes exactly
21+(r=1)/9 subsets A C 2. Since for a fixed prime ¢, G contains exactly p

such subgroups T', we obtain

H{A C Q| stabg(A) # 1} < {(T,A)|A C Q,|T| a prime, T < stabg(A)}|
<py 2Nl = f(p),
q _

where ¢ runs through all prime divisors of p — 1. Now observe that the

number of prime divisors of p— 1 is bounded by log, p. We thus obtain that
f(p) <p-log,p- o t1)/2 o,

provided that p > 13. Also f(11) = 11(64 + 8) < 2'!'. This counting
“argument tells us that regular orbits on PB(Q) can only fail to exist in the

case p < 7.

We start by considering the case p = 7. If |G| = 42, then G cannot have a
regular orbit on ‘I}(Q), because (j) < (;) =35 < |G[ forallz =0,...,7
If however |G| = 21, then every A C Q such that |A| = 2 indeed satisfies
stab g(A) = 1. Let finally |G| = 14. Then each of the seven involutions
of GG stabilizes exactly three subsets A C § of cardinality |A| = 3. Thus

the remaining (g) — 21 = 14 such subsets form a regular orbit under the
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action of G. We next consider p = 5. If |G| = 10, then each of:the five
involutions of G stabilizes exactly two subsets A C Q with |A| = 2. This
immediately implies that every subset A C € has a non-trivial stabilizer
in G. Consquently, also the Frobenius group of order 20 has no regular
orbit on P(Q). Since p = 3 forces G = Sy, the proof of the lemma is
complete. O

Unfortunately, the proper prime powers less than 81 require a very de-

tailed step-by-step analysis.

5.4 Lemma. If|Q| = 2%, 5% or 7%, then G has a strongly regular orbit on
P

Proof. (1) We first consider |Q] = 26, hence S < GL(6,2). Let ¢ € G#.
If s(g) = 0 or s(g) = |Cy(g)| , 2, then Lemma 5.1 yields n(g) < (|Q| +
5(g))/2 < 40. If s(g) = 25, then g centralizes a hyperplane of V. Observe
that the centralizer in GL(6, 2) of a hyperplane is elementary abelian of order
32. Thus n(g) = 32 +32/2 = 48. We set Gy = {g € G | n(g) = 48} and
G1 = G#\Gy. AsV has exactly 63 hyperplanes it follows that |G| < 63-31.
By Corollary 3.6, |G| < (2%)!3/4/2. Recalling the definition of the sets T(X),
we obtain |T(G#)| < |T(Go)| 4 [T(G1)| < 2%8 .63 - 31 + 240 (26)13/4)2 <
2%9 42% = 2% Now {A C Q| |A] # 32} > <64 > 2% > |T(G#)], and
G has a strongly regular orbit on P(f).

(2) Let now |2 = 7% Since || is odd, we only have to establish the
existence of a regular orbit. To do so note that Lemma 5.1 yields n(g) < 28
for all g € G#. Since S acts irreducibly on V, Theorem 2.11 implies |S| <
144. Therefore

IT(GH)] < 2% |G) < 2% (144 - 49) < 2% < 2%9 = |q3(Q))

and we have settled case (2).

(3) Suppose finally || = 52. We first note that S is isomorphic to a
subgroup of GL(2,5) of order dividing 32, 48 or 96 (cf. Theorem 2.11).
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We define G, = {g € G | o(g) =} and G = {g € Ga | s(g) = i} for
r =2,35and i = 1,5. Then each A C Q is stabilized by an element in
X = G%UG;UGsUGs.

Observe the following values of n(g):

g€ n(9)

G} 13

G35 15

G .
Gs 5 (because 51 |S]).

If ¢ € G, then g is a central involution even in GL(2,5) and hence each
conjugate of S contains at most one such g. Thus |G}] < 25. Furthermore,
g € G3 is contained in five conjugates of S, and Gs = V#. Altogether we

obtain

{A C Q] stabg(A) # 1} < [F(X)]
< 2B3|Gi| + 2"%|G3| + 2°|Gs| + 2°|Gs|

< 913,951 215.5.96+2°- 2596 +2° - 24 < 2%° = |B(Q)],

which completes the proof. ‘ O

Whereas in the previous lemma we only needed bounds for the order of

S, the proof of the next lemma relies on the actual structure of S.

5.5 Lemma. If || = 2%, 3% or 2%, then G has a strongly regular orbit on

P(Q).

Proof. (1) Let |©2] = 25. Then Corollary 2.13(a) implies that S is a sub-
group of I'(2°). In order to guarantee a regular orbit, we may assume that
S =T'(2°) and G = AT'(2%). Recall the permutation actions of S on. and
V are isomorphic. If A C Q with |A| =3, then A is stabilized by some ele-
ment g € G of prime order. Since |G| = 25.31.5, indeed g must centralize
some & € A and consequently g is conjugate to an element of S. If = € S#,

then o(z) is 31 or 5 and |Cy(z)| is 1 or 2 (respectively). Since the actions
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of S on V and {2 are permutation isomorphic, the orbit pattern for {z) on
Q is (1,31) or (1,1,5,5,5,5,5,5), respectively. Thus A is stabilized by no
element of S or G. o

(2) Assume now that |Q| = 2¢. By Corollary 2.15 it is now sufficient to
consider the cases S = I'(21) and S = I'(2%)wr Z,.

We first assume that § = I(2%). Let Q7 = {A C.Q | [A] = 7}. We may
assume that each A € €7 is fixed by some element ¢ € G of prime order.
Since o(g) 1 |A], g centralizes some § € Q7 and so g is conjugate to some
element of S. If z € S has order 3 or 5, then Cy(z) = {0} and hence (z)
has an orbit pattern (1,3,3,3,3,3) or (1,5,5,5) on Q. Thus z stabilizes 10
elements of A7 if o(z) =3 and none if o(z) = 5. Anelement y € S of order 2

satisfies |Cv(y)| = 4 and y stabilizes (g) 4+ <g 4 = 140 elements of Q7.

Furthermore such a y belongs to 4 conjugates of S as |Cy(g)| = 4. Since S

has exactly one subgroup of order 3 and five of order 2 (all conjugate in 5)

16) = Q7] < 16-10+(16-5-140/4) =

and since S has 16 conjugates in G, ( 7

2960, a contradiction.

We now consider the case where S = I'(2%)wr Z; as a linear group on
V. Then V = V; & V,, where V; & A(22) and Zy permutes the V;. Since
AT(2%) =~ 54, we conclude that G = AL'(2%) wr Z, & S; wr Z;. Again
Q and V are permutation isomorphic and we may thus identify  with
{,5)|i,5=1,...,4} Let A={(1,1),(1,2),(1,3),(2,2),(2,4),(3,1)} and
choose g € stab g(A). Then g = (g1,92) € S4 x S4, since three different
entries appear as first coordinates in A, but four different ones as second

coordinates. Now the entry ¢ (z = 1,...,4) occurs exactly 4.— ¢ times as

first coordinate in A, which clearly implies that g; = 1. Similarly, g, has to

Afix the sets {1,2} and {3,4}. But as ¢; = 1, we also see that g, =1, and A

generates a strongly regular orbit on PB(Q), because |A| # [Q]/2.



(3) In the case |[)] = 3%, we may proceed similarly to case (2). By
Corollary 2.13(b) namely we have to investigate the possibilities S = I'(3%)
and S = I'(3) wr S3.

Suppose that S = I'(3%). We let Q;; = {A C Q | |A| = 11}. Each
element A € Q is stabilized by some element ¢ € G of prime order. Since
o(g) # 11, g centralizes some § € A and so ¢ is conjugate to some element of
S. If x € S has order 2 or 13, then Cv(z) = {0} and z has exactly one trivial

orbit on 2. Hence z stabilizes elements of Q31 if o(z) = 2 and none if

13
5
o(z) = 13. If y € S with o(g) = 3, then |Cy(y)| = 3. So y has 3 fixed points
g -3 elements of 11, and y belongs to 3 conjugates of S.
Since S has one subgroup of order 2 and 13 subgroups of order 3 and since S

has 27 conjugates in G, (_27) = |1 £ 27-(153> +27-13- <8> = 27.2015,

in {2, y stabilizes

11 3
a contradiction. Hence S has a strongly regular orbit on PB(£2).

S;Jppose finally that S =TI'(3) wr S3 = Z; wr S3. Then we have G = S3
wr S3 and Q can be identified with {(1,7, k) l i,7,k = 1,2,3}, where the
base group S3 x S3 x S3 acts componentwise and the S3 outside permutes
the coordinates. Let A = {(1,1,3),(1,2,1),(1,2,3),(2,2,2),(2,2,3)} € Q
and let g € stab g(A). Comparing the occurrence pattern of the entries in
the distinct components, it easily follows that ¢ = (91, 92,93) € S3 X S3 %
Si, and then that ¢; = 1 (¢ = 1,2,3). This completes the proof of the

lemma. O

5.6 Theorem (Gluck). Let G be a primitive solvable permutation group
on a finite set Q with point stabilizer S. Then G has a regular orbit on

PB(), unless one of the following cases occurs:
(1) 10| = 3 and G = S3;
(2) |2 =4 and G = A4 01; Su;
(3) [2] = 5 and G = Fo or Fy;
(4) |Q] =7 and G = Fyy;
(5) |9 = 8 and G = AT(2%);

(6) |92 =9 and G is the semi-direct product of Z3 x Z3 with Dg, SDjs,
SL(2,3) or GL(2,3).
In the exceptional cases, no regular orbit exists. Also if (2,G) is non-

exceptional and if || # 2, then there even exists a strongly regular orbit on

P(E). -

Proof. By Proposition 5.2 and Lemmas 5.4 and 5.5, G has a strongly reg-
ular orbit on () provided that |Q| > 81 or 2] = 2%, 2%, 29, 3%, 5% or
72 If [©2| = 2, then G = Z; and G has a regular, but no strongly regular
orbit. If |Q] is an odd prime, then a regular orbit automatically is strongly
regular, and Lemma 5.3 tells us that the exceptions are precisely given by

(1), (3) and (4) above. Let next [Q| = 22. Then G-= A4 or S4 and in both

_ cases no regular orbiton P(N) exists. Thus we still have to discuss the cases

2] = 23 and 3%.

If |9] = 22, Corollary 2.13(a) yiclds § < I'(2%). If equality holds, then
every subset A C  has a non-trivial stabilizer, because f < 168 =
|AT(2%)| = |G| for i = 0, 1,...,8. Otherwise we have |S| = 7, since S acts
irreducibly on the minimal normal subgroup V of G. As V is an elemen-

tary abelian 2-group, every subset X C V of cardinality three has a trivial

stabilizer in G and thus generate.s a strongly regular orbit.

Let finally || = 3%. Then S'is an irreducible subgroup of GL(2,3).
By Theorem 2.11, S is a subgroup of Dg, or a subgroup of SDjs, or is
isomorphic to Qs, SL(2,3) or GL(2,3). If S = GL(2,3), SL(2,3) or SDys,
then ? < |G| for all ¢ and no regular orbit exists. Since S acts irreducibly,

the remaining possibilities for S are Dg, Qg, Zg and Z4. Let first § = Dy,
and consider SDye 2T € Syl2(GL(2,3)) with S < T. Note that both S and
T have b involutions. By the Sylow Theorems, it follows that every element
of prime order in VT is in V'S. As each X C V has a non-trivial stabilizer
in VT, it follows that G = V.S as well has no regular orbit-on P(). In
each of the cases S = (g, Zg and Z4, the group S acts fixed-point-freely

on V and contains exactly one involution. Consequently G' = V.S contains

|
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exactly 9 involutions and their orbit pattern on V is (1,2,2,2,2). The orbit
pattern of the 8 elements of G of order 3 is (3,3,3). Thus stabg(A) is a

2-group whenever |A| = 4. Each involution in @ stabilizes subsets of

4

2.
. 9 4 . .

order 4 of . Since 4] 9. 5 |» some X CQwith | X]=41isina

tegular orbit of G on P(§). a

We draw two Corollaries from Theorem 5.6. The first will be needed in

817, and the second is an essential ingredient of §9.

5.7 Corollary. Let G be a solvable permutation group on a finite set Q.
(a) There exists a subset A C § such that stab g(A) is a {2,3}-group.

Here, A can be chosen to have non-empty intersection with every

orbit of G on .
(b) If |G| is odd, then there exists a regular orbit of G on P(Q).

Proof. (a) Let Qi,...,, be the orbits of the action of G on P(Q). If
we can find subsets A; C ; (1 = 1,...,n) such that stab g(A;)/Ca(Q)
is a {2,3}-group, then obviously A = A; U---UA, satisfles the desired
condition. Note that we may assume that ‘A; # @, since otherwise A; = Q;

can be taken. Hence we may assume G to be transitive.

We first suppose that G acts primitively on Q. We in fact prove the
existence of A C Q, |A] # |9]/2, such that stab g(A) is a {2,3}-group.
This is certéinly clear if G has a strongly regular orbit on PB(£). Therefore
we have to consider the exceptional cases of Theorem 5.6. If || = 2, 3, 4
or 9, we can take A = Q. If |2] = 5, 7 or 8, any subset A with |A| =1, 1

or 2 (respectively) works.

If G is imprimitive, let H denote the point stabilizer of & € 2. We fix a
subgroup J such that H < J < G and H is maximal in J. If we choose {g1 =
1, g2,--+,9¢} as right coset representatives of J in G, we set J; = J¥ and let
A; be the Ji-orbit of @g; (1 = 1,...,t). It then follows that Q = A U...UA,,
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stab g(A;) ='J; and G transitively permutes the A;. Let K = ); Ji- Then
G/K faithfully permutes the A; and hence {1,...,t}. Since t < [, we
may choose by induction s > 1 such that stab g/ c({1,...,s}) is a {2,3}-
group. Since J; primitively permutes A;, the previous paragraph yields
the existence of Z; C A;, || # |Ai]/2, such that stab s(E)/Cu(A) is a
{2,3}-group. In particular, stab x(Z;)/Ck(A:) is a {2, 3}-group, because
K < Ji. We may clearly assume that |=;| > |A;]/2 if and only if i < s.
Thus = := :=1 Zi € Qis non-empty. Since [, Cx(A;) =1,

stab 1c(E) < [] stab x(2:)/Cre(A))

is a {2, 3}-group. By. the choice of s, also

stab g(E)/stab i (E) = K - stab g(Z)/K < stab ari({L,---,s})

is a {2, 3}-group, and thus the same holds for stab c(2).

(b) By Theorem 5.6, every primitive permutation group of odd order has
a strongly regular orbit on PB(Q). But then a similar induction argument as

in (a) yields assertion (b). “ O

5.8 Corollary. Let G' be a primitive solvable permutation group on a finite
set §). Let ¢ be a prime divisor of |G|, and assume that for all A C Q,
stab g(A) contains a Sylow g-subgroup of G. Then one of the following
cases occurs.
(i) 9] =3, ¢ =2 and G = Dy;
(ii) 19| =5, ¢ =2 and G = Dyy;
(iii) |Q| =8, ¢ = 3 and G = AD(2%).

Proof. We first climinate case (6) of Theorem 5.6. Here we must have
¢ = 2 and we fix Q € Syl (G). Since Cy(Q) = 1, @ has exactly one
fixed point on . Since @ must stabilize a set of size j for all 7 < 9, the
possible orbit sizes of () are (1,2,2,2,2) and (1,2,2,4). Let us denote by

t the number of subsets of Q of size 4 that are fixed by @. Observe that



t < 6. Since [Syl2(G)| -t = (2), and since |Sylz(G)| l 3%, it follows that
ISyly(G)| = 27 and ¢ > 5. Thus the orbit sizes of Q are (1,2,2,2,2) and

@ is elementary abelian. This is a contradiction, because GL(2, 3) does ndt
contain an elementary abelian subgroup of order 8. We next eliminate case
(4) of Theorem 5.6. If ¢ = 3, the orbit sizes of @ € Syl3(G) are (1,3,3),
and thus no subset' A C § of cardinality two can be stabilized. If on the
other hand q =2, Qe Syl2(G) has orbit sizes (1,2,2,2). Now the number
of subsets A C § such that |A| = 3 and such that @ C stabg(A) equals 3.

Since |Syl2(G)| = 7, we obtain 7-3 < 35 = (g

, a contradiction.
The remaining cases of Theorem 5.6 which do not appear among (i)—(iii)
can be easily ruled out by considering orbit sizes of Sylow g-subgroups.

O

~

§6  Solvable Doubly Transitive Pefmutation Groups

In the 1950s, Huppert classified the solvable doubly transitive permuta-
tion groups on a set 2. Such a group G is certainly primitive ([Hu, II, 1.9])
and hence contains a unique minimal normal subgroup V that acts regularly
on Q. In particular, |[V| = |Q| = ¢" for a prime q. Furthermore, VG, = G,
VNG, =1and G, acts faithfully on V. Since G is doubly transitive, C'a
acts transitively on V#. Now Huppert’s result, which has many uses as
,we shall see later, states that G may be identified as a subgroup of AT'(¢™)
,or ™ = 32, 52 7% 112, 23% or 3'. Huppert’s original proof did not use

Zsigmondy’s prime theorem, but that was later modified in [HB, chap. XII].
Another approach is given in Passman’s book [Pa 2]. We present a different

proof which expfoits the Zsigmondy' prime theorem fully.

6.1 Definition. Let @ > 1 and n be positive integers. A prime p is called a
. ‘ 4 ;

Zsigmondy prime divisor for a™ —1if p l a®~1butpta?—1forl <j<n.

"~ (Note that this is dependent upon @ and n and not just on a” — 1.) If p is

a Zsigmondy prime divisor for a™ — 1, then n is the order of a module p.

AT Sobvavnii b ilhad b i L i Lenu S U

Hence n ] p—1.

6.2 Theorem. Let a > 1 and n be positive integers. Then there exists a
Zsigmondy prime divisor for a™ — 1 unless

(i) n=2and a=2*~1 for some k € N, or

(i) n =6 and a = 2.

Proof. See e.g. [HB, IX, 8.3]. A short, elementary proof is also given by
Lineburg in [Lii 1]. O

-

6.3 Proposition. Assume that G is a solvable subgroup of GL(n,q), q a
prime power. Suppose that p | |G| where p is a Zsigmondy prime divisor of
q" — 1. Let P € Syl,(G) and V be the corresponding G-module. Then

(i) G acts irreducibly and quasi-primitively on V, and

(ii) P is cyclic.

Proof. We may assume that n > 2 and p > 2. Let x € P denote an
element of order p. Since p } ¢/ — 1 for all 7 < n, {(z) and hence G act
irreducibly on V. If V is not quasi-primitive, we may choose C' <I @ such
that Vo = Vi1 @ - @ V,, for non-zero C-modules Vi permuted faithfully by
G/C. Sincé m < n < p, P fixes each Vi, whence P < C and z € C. Now
(z) and hence C act irreducibly on V. Thus m = 1 and C = G. This proves

().

Applying (i) with P = G, we have that P acts irreducibly and quasi-
primitively on V. Thus every normal abelian subgroup of P is cyclic. Since
p > 2, P is cyclic, by Corollary 1.3. O

—

If G 1s a transitive subgroup of GL(n,q), then |G| is divisible by all
Zsigmondy prime divisors of ¢" — 1. In all but a few cases, |F(G)| will be
divisible by a Zsigmondy prime divisor of q" — 1, and as Lemma 6.4 shows,

this forces solvable G to be a subgroup of I'(¢™). Lemma 6.7 will Laudle
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Proof. We may assume that n > 1 and p > 2, aiid we choose P, < P

ing those solvable groups G < GL(n, q) whose Fitting factor group G/F(G)
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the exceptional cases where |G| is divisible by a Zsigmondy prime divisor of

q" — 1, but |F(G)| is not.

6.4 Lemma. Assume that G < GL(n,q) is solvable (¢ a prime power).
Suppose that p | |F(G@)| for a Zsigmondy prime divisor p of ¢™ — 1. Let
P € Syl,(G). Then

() G < T(e").

(ii) When 1 # Py < P, then F(G) =

(iii) F(G) and G/¥(G) are cyclic, |[F(G)| | ¢" =~ 1 and |G/F(G)| | n.

Cg(FPo) 2 P.

with |P;| = p. The hypotheses of the lemma imply that P N F(G) # 1,
and thus P; < F(G), because P is cyclic (Proposition 6.3). Also P, < G
and P, < Z(F(G)). By Proposition 6.3 and Lemma 2.9, the natural module
V of GL(n,q) is an irreducible P;-module and Cg(P;) is cyclic. Thus
F(G) = Cg(P1) = P and F(G) is cyclic. Part (ii) now follows.

Since P acts irreducibly on V, Theorem 2.1 implies that G < T'(¢™) =: T".
Now p i |Tq|, where T’y 4T is the cyclic subgroup of multiplications of order
g* — 1. Thus p I |F(T)| and the arguments of the last paragraph apply to
I' as well. It follows that Py < P < F(T') = Cr(Py),
F(T') =Ty. Also T'/F(T) is cyclic of order n. Because

F(T) is cyclic and

NNOGQH@:CﬂHmGSHDDQ

we have that F(G) = G NF(T") and the result follows. O

The key to finding the exceptional cases of Huppert’s Theorem is describ-

is divisible by a Zsigmondy prime divisor of ¢™ — 1. Before we do so, we

stop and study the structure of semi-linear groups in more detail.
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6.5 Lemma. Let I' = T'(¢™) and Ty = T'g(¢™) for a prime power q.

(a) If n = 2 and ¢ € O, then I’ = R x S where R is a non-abelian
2-group and S is cyclic of odd order.

(b) If ¢" = 2°, then Ty = F(T). Let S and T be the unique subgroups
of T'g of order 3 and 7, respectively. Then |Cp(S)/T| = 3 and
|Cr(T)/To| =2.

(c) In all other cases, Ty =
q" — 1 and each non-trivial p-subgroup Py of T, Ty =

F(T'). For each Zsigmondy prime divisor p of
Cr(Py) > Py.

Proof. Recall that T has a cyclic sﬁbgroup B =
of field automorphisms, I' = 'yBand TyNB =1, £ U _<_' Iy, then Cp(U) =
[oCp(U). For a € B of order t, it holds that |Cp,(a)| = ¢"/t — 1

(B) of order n consisting

If n =2and ¢ € M, Cr, (ﬂ) has order ¢ — 1 and thus contains the Hall
2'-subgroup of I". Part (a) now follows. ’

Assume next ¢™ = 2°. Since |Cr,(#%)| = 3 and |Cr,(8%)| = 7, we have
that [Cr(S)/To| = 3 and |Cp(T")/To| = 2. Clearly 'y < F(T), and equality
follows, since A2 does not act trivially on T € Syl7(T'g) and [33 does not act
trivially on the Sylow 3-subgroup of Ty.

If (a) or (b) does not apply, then ¢™ — 1 has a Zsigmondy prime divisor
P, by Theorem 6.2. Therefore p I [To|, whence p l |F(T)|. By Lemma 6.4,
F(T') = Cr(Py) is cyclic and contains Py. Since each subgroup of T' which

properly contains I'g is non-abelian, T’y = F(T) follows. O

6.6 Corollary. Suppose that G <T'(q") and p | |G| for a Zsigmondy prime
divisor p of ¢" — 1. Then p I |F(GQ)| and Lemma 6.4 applies.

Proof. Let P € Syl,(G) and write T for I'(¢"). By Lemma 6.5 (c), T has =

“a unique Sylow p-subgroup, and therefore

P<O,()NG<FT)NG < F(Q). A 0



We let F1(G) < F5(G) < ... denote the ascending Fitting series, i.e.
F1(G) = F(G) and Fi4,(G)/Fi(G) = F(G/Fi(G)).

6'.7 Lemma. Suppose that G is a solvable subgroup of GL(n,q) (¢ a prime
power) and p is a Zsigmondy prime divisor of ¢" — 1. Assume also that
p | IG/F(G)|. Then pt|F(G)| and k
(i) n=p—1=2" for an integer m = 2k > 1;
(ii) F(G) = ET where E < G is an extra-special 2-group of order 22™+1,
T is cyclic, T =Z(G) and TN E = Z(E);
(i) T < Z(GL(n,q)) and [T q—1; (
(iv) Fo(G)/F(G) is cyclic of order p, and G/F5(G) is a cyclic 2-group
with |G/ Fy(G)| | 2m.

Proof. By Lemma 6.4 and Corollary 6.6, p { |F(G)| and G £ I'(¢"). In
‘particular, n > 1and p > 2. Let V be the corresponding G-module of
order ¢™ and let P € Syl,(G). By Proposition 6.3, P is cyclic and V is
an irreducible quasi-primitive G-module. Since G % T'(¢™), Corollary 2.3
implies that F(G) is non-abelian. Set F' = F(G), F; = F3(G) and Py < P
with |Py| = p.

Let A be o normal abelian subgroup of G. Then. A is cyclic, because V' is
" quasi-primitive. If P % Cg(A), then every faithful ¢ € Irr (AP) has degree
divisible by p. Note that (g,|AP|) =1 by the choice of p and since A < F.
Then Lemma 2.4 implies that p < dimgp(g)(V) = n, a contradiction to
n|p—1. Hence P < Cg(A) for all abelian A < G.

Since Cg(F) < F, we may choose a prime r and a Sylow r-subgroup R of

* F with Py £ Cg(R). By the last paragraph, R is non-abelian. Every normal
~abelian subgroup of G is cyclic and we apply Theorem 1.9 to conclude that
| R=ES with E, Slﬂ G such that EN S is the unique subgroup Z of Z(R)
. of order 1, E is extra-special or E = Z, and S has a cyclic subgroup U 4 G
with |§: U| < 2. By the last paragraph, P < Cg(U). Clearly, P centralizes
S/U and p,# 2. Thus P centralizes S. Since V' is an irreducible ’-module

(see Proposition 6.3), Cg(P) is cyclic by Lemma 2.9 and hence S is cyclic.
As R is non-abelian, E > Z.

Let H = EP. Then V}; is irreducible and quasi-primitive, by Proposition
6.3. Now P acts faithfully on E/Z and we may choose a chief factor E\/Z
of H such that Py and P act faithfully on E,/Z. Furthermore, applying
Theorem 1.9 to H, we may assume that Z = Z(E,) and E, is extra-special,
say |Ey/Z| = r?. Since P centralizesiZ, P is a cyclic irreducible subgroup of
Sp(2l,r). Consequently, |P| l rt+1 (see [Huy, I, 9.23]). Now |E/Z| = r?m

for an integer m > I and Corollary 2.6 implies ‘that dim(V) = tr™ dim( I/V)_

for an irreducible S-submodule W of V and an integer ¢. Then
n<p—-1<|P|—-1<rl<p™<ypm dim(W) = dim(V) = n.

Equality must hold throughout. Thus P has order P, p=1r"+11isa Fermat

prime, 7 = 2 and m is a power of 2. Also dim(V) =n=2" and | = m, i.e.
E/Z is a chief factor even in G.

We chose ’R to be a Sylow r-subgroup of F' not centralized by Py = P and
proved that r = 2. Thus P centralizes S, € Hally(F). Let T = 55, 4 G
and note that ' < Cg(P). Thus T is cyclic by Lemma 29, F = ET
and ENT = Z = Z(E). Also T < Z(GL(V)) by Lemma 2.10 (iii), as
n=dim(V) = |E/Z['/2. Parts (i), (ii) and (i) now follow.

Since p = 2™ 4 1, p is a Zsigmondy prime divisor of 22™ — 1. If also
pt1F2/F|, then (ii) applied to the faithful action of G/F on E/Z implies
that O2(G/F) # 1, a contradiction because E/Z has characteristic 2. Hence
P ’ |F2/F|, and Lemma 6.4 implies that F3/F and G/F; are cyclic with
|G Fy| ] 2m. By Proposition 6.3, F3/F acts irreducibly on E/Z. Again
employing [Hu, 11, 9.23], we have' that |Fy/F| l 2™ +1=p. Hence G/F, <
Aut (Z,) which is a cyclic 2-group of order 2™. But we also know that

|G/F3| | 2m. This proves (iv). O

6.8 Theorem. Let V be a vector space of dimension n over GF(g), q a

prime power. Suppose that G is a solvable subgroup of GL(V') that transi-
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tively permutes the elements of V#. Then G < T'(q"), or one of the following
occurs:
(a) q" = 3%, F(G) is extra-special of order 2%, |Fo(G)/F(G)| = 5 and
G/Fy(G) < Zy.
(b) q™ = 3%, 5%, 7%, 11% or 23%. Here F(G) = QT, where T = Z(G) <
Z(GL(V)) is cyclic, Qs 2 Q 4 G, TNQ = Z(Q) and Q/Z(Q) =
F(G)/T is a faithful irreducible G/F(G)-module. We also have one

of the following entries:

¢ Tl G/F(G)
3? 2 Z3 or S3
52 2 or4 73
52 4 53
72 2 or 6 S3
112 10 ZzorS
232 22 S

Proof. We may assume that n > 1. Since G acts transitively on V#, V is

an irreducible quasi-primitive G-module and ¢™ —1 | |G|.

Suppose first that n = 2. We may assume that G £ I'(¢?). Then Theorem
2.11 implies that F(G) = QT where Qs = Q I G, T = Z(G) < Z(GL(V))
is cyclic, |T| | -1, TnQ = Z(Q), G/F(G) is isomorphic to Zy or Sy
and G/F(G) acts faithfully on Q/Z(Q). Now |G| = |G/F(G)||F(G)/T||T|
divides 24(q — 1). But ¢* — 1| |G| and so ¢ +1 | 24. Since O2(G) # 1, ¢
is odd, and ¢ = 3, 5, 7, 11 or 23. Counting yields conclusion (b) or that
q" = 5%, |T| = 2 and G/F(G) = S3. In this case, |G| =24-2. Fixve V#
so that |Cg(v)| = 2. Also F(G)N Cg(v) = 1. Now F(G) 9 § 4 G where
|G/S| = 2 and S also acts fixed-point-freely on V#. Now let Z = Z(GL(V))

so that |Z| =4 and ZNG = T has order 2. Set Gy = ZG, then |G4| = 2|G|

and Gy/S = Zy x Z3. Also set H = Cg,(v). Since |G| = 4 - 24, we have
that |H| =4, HNS =1and HS = Gy. Thus H = Z; x Z,. Since ¢} |H]|,
H acts faithfully on the one-dimensional space V/{v). Thus H is cyclic, a

contradiction. We may now assume that n > 2.
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If secondly ¢ = 2 and n = 6, then 63 ’ |G|. Since V is a quasi-primitive
G-module, Corollary 2.15 implies that G < I'(2°). In the remaining cases,
Theorem 6.2 allows us to choose a Zsigmondy prime divisor pof¢g"—1. By
Lemma 6.4, we may also assume that p{ |F(G)|. Applying Lemma 6.7, we

have that
(i) n =p—1=2™ for an integer m;
(ii) F(G) = ET where E < G is an extra-special group of order 22™+1,
T = Z(G) < Z(GL(V)) and ENT = Z(E);
(i) F»(G)/F(G) is cyclic of order p;
(iv) G/Fy(G) is a cyclic 2-group with order dividing 2m.

In particular, |G| = [G/Fy(G)||F2(G)/F(G)||F(G)/T||T| indeed divides
2-m.p-2?2™.(¢g—1) and p is the 01liy odd prime dividing |G|/(q¢—1). By the
transitive action, (¢" —1)/(¢—1) | |G|/(¢—1). If n = 2™ > 8, then ¢/ —1
has an odd Zsigmondy prime divisor py # p which must divide [G|/(¢g — 1),
a contradiction. By (i) just above, we are left with 7.= 4. Then p = 5 and
m = 2. Now (¢* —1)/(¢ = 1) divides 2% -5. Thus ¢*>. < 2°.5 and ¢ = 3.
Because T' < Z(GL(V)), |T| | ¢ —1 =2 and F(G) is extra-special of order

25, Observe that conclusion (a) of the theorem is satisfied. O

An example due to Bucht is presented in [HB, XII, 7.4] of a solvable group
G < GL(4,3) such that |G| = 27 -5, G has subgroups G| > G; of index 2
and 4 with G, (and hence G; and G) transitive on V#. Furthermore, G,
(and hence G and G) is not a subgroup of I'(3*). For each of the other
exceptional values of ¢™ and corresponding values of |G| given in Theorem
6.8, there is a solvable subgroup G < GL(n,q) with G £ T'(q"), but G

transitive on V#. We refer the reader to Huppert’s original paper [Hu 2].

Theorem 6.8 can now be stated in terms of doubly transitive permutation
groups. To avoid redundancy, we do not list the structure of the exceptional
cases, which again do exist. The proofs of this section were derived by Wolf

with encouragement from P. Sin.

<

6.9 Theorem (Huppert). IfG is a solvable doubly transitive permutation



group on £, then |Q| = ¢" for a prime ¢ and G < AT'(¢™) unless ¢" = 32, 52,
72,112, 23% or 3*. In the non-exceptional cases, the unique minimal normal

" subgroup of G is A(q").

Proof. Since G is 2-fold transitive, G is in fact primitive (see [Hu, II, 1.9]).
Then, by solvability, G has a unique minimal normal subgroup V that acts
regularly on §, VG, = G (a € ), VNG, = 1 and the actions of G, on
Q and V are permutation isomorphic. Thus G transitively permutes the
elements of V#. If g™ # 3% 52 72, 112, 232 or 3%, then G, < T'(¢"), by
Theorem 6.8, and G < AT(¢"), by [Huy, II, 3.5]. O

Suppose that G < GL(n,p) is solvable and irreducible (p a prime). Let
V be the corresponding natural module, and » be the number of orbits of G
on V#. Theorem 6.8 states that when r = 1, then G < I'(p™) or p" is one
of six values. In [Sa 1], S. Saeger shows that if G is primitive (as a linear
group) and if r < p™/2/(12n + 1), then G < 1"(])"‘) or‘p” is one of 174, 19%,
76, 58, 78, 138, 7%, 36 or 56, Of course, when r = 1, it is easy to see that
G is a primitive linear group. However, the inequality cannot be met for

small values of p", including the exceptional values in Theorem 6.8.

§7  Regular Orbits of Sylow Subgroups of Solvable

Linear Groups

In this section, we return to the study of regular orbits of a p-group P.
But this time we consider P as a Sylow p-subgroup of some solvable linear
group in characteristic p, and present a remarkable result due to A. Espuelas
[Es 1]. Our proof however is different from Espuelas’ c')l}e; whereas he uses
tensor induction, we rely on the methods developed so far. We shall also
use a result which admittedly does not lie at the surface, but which is often

helpful when studying indecomposable modules for p-nilpotent groups over

arbitrary fields of characteristic p, namely:

7.1 Proposition. Let G be p-nilpotent and V a finite-dimensional inde-
composable K[G]-module, char (K) =p > 0. If
0=Vy< Vi < <V, =V

is a composition series of V, then all composition factors Vi/Vi—y (i =

1,...,n) are mutually isomorphic.

Proof. Since V is indecomposable, V belongs to a block of K£[G] and all its

composition factors belong to the same block (see [HB, VII, 12.1]). Since G’

is p-nilpotent, each block of X[G] only contains one irreducible K[G]-module
(see [HB, VII, 14.9]) and the assertion follows. O

The next lemma, which will as well become important in Chapter III,
has some connections to the Hall-Higman results (see [HB, chap IX] and
the remarks following the lemma). Our techniques are elementary and work

for arbitrary fields.

7.2 Lemma. Suppose that Z := Z(E) < E < H with |H: E| = p, p1|E|
and E/Z is an abelian g-group for primes p and q. For P € Syl,,(H),
assume that P ,{ Cpy(E). Let V be a finite-dimensional H- module w1th
char (V') 1 |E| such that Vg is faithful and homogeneous. Then l .

() dim(Cy(P)) < dim(V)/20r 3
(ii) p=2, P < Cy(2) and dnn(Cv(P)) ((g+1)/(2q)) - dim(V).

Proof. We argue by induction on |H|. Note that P £ Cu(E) implies
E # 1. Since Vg is homogeneous and Z = Z(E), Vz is homogeneous. Thus
7 acts fixed-point-freely on V and is cyclic.

If Z £ Z(H), we may choose 1#Y < Z withY 4 H and YP a Frobe-
nius group. Since Cy(Y) = 0, Lemma 0.34 implies that dim(C v(P)) <
(dim(V))/p. We may thus assume that Z < Z(H) and E > Z. Let
L/Z = [E[Z, P], recall that Vg is homogeneous and write V, = V1 @®-- @ Vy

N

— 1

N

N
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for homogeneous components V; that are transitively permuted by E/L.
Now V/ again is a homogeneous L-module (¢ € P, : = 1,...,n), and thus P

permutes the V;. Since P centralizes E/L, Glauberman’s Lemma 0.14(a,b)

implies that P fixes each V;. Set C; = Cp(V;),7=1,...,n, and suppose that -

[P, L] < C; for some j. Since E/Z = L/Z x Cg;z(P) and E/L = Cg,z(P)
transitively permutes the Vi, we then have [P,L] < (), C; = 1. This
implies that P centralizes I, E/L and hence E, a contradiction. Thus
[P,L/Ci]# 1 foralli. If L < E, we apply the inductive hypothesis to the
action of PL/C;on V; (i =1,...,n) and the conclusion of the lemma holds.

We may therefore assume that L = F.

Let M/Z be a minimal normal subgroup of H/Z. First assume that Vjs
is not homogeneous and write Viy = Wiy @ ---® W, (I > 1) for homoge-
neous components W; that are transitively permuted by E/M. Again P
permutes the W;. Since Cg/y(P) = 1, Glauberman’s Lemma 0.14(a,b) im-
plies that P fixes exactly one W; and permutes the others. Thus p ' -1 and
dim(Cy(P)) < (1+({—1)/p)-dim(W)). For p odd, it suffices to show that
1+(I—-1)/p < 1/2 or equivalently that (1/(I1—1))+(2/p) < 1. This holds as
[—12> p> 3. For p =2, it suffices to show that 1+(1—1)/2 < 1-{(¢+1)/(29)
or equivalently that ¢ < I. But this follows, since the ¢-group E/M transi-
tively permutes the ! homogeneous components W;. Thus the result holds

when Vs is not homogeneous and we may assume that Vjr is homogeneous.

Since [M/Z,P] # 1, P acts non-trivially on M. Thus if M < E, the
result follows from the inductive hypothesis applied to M P. Hence E/Z is
a chief factor of H. Since P centralizes Z = Z(E), but does not centralize
E, we also have B’ #£ 1.

Let. 0 # z € Cy(P). As Cg(z) = Cg(x)Z/Z is abelian, Cg(z)Z is an
abelian normal subgroup of H. Thus the last paragraph implies Cg(z) < Z
and Cg(z) = 1. Let Py € Syl,(H) with Py # P. Then 1 # [P, Py] < E and
[P, Py] centralizes Cy(P) N Cy(Py). Consequently Cy(P)N Cy(Py) =0
and dim(Cy(P)) < (dim(V))/2 follows. O
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As indicated before, Lemma 7.2 can also be proved more heavy-handedly
by Hall-Higman techniques.” The advantage of this appréach however 1s
that it clarifies the module structure of Vp in the case where P <-Cy(Z )4,
E is extra-special and [E/Z, P] = E/Z. We may also assume that V is an
indecomposable H-module and that the underlying field F is a splitting-
field. In-this situation the proofs of [Hu, V, 17.13] and [HB, IX, 2.6] yield:

(1) char(F) # p, xp = mp + &, where x is the character of V, p is
the regular character of F[P],  is a linear character, m € N and
§ =41,

(2) char (F) = p, Vp = m - F[P|® W, where W is an indecomposable
F[P]-module (possibly W =0) and m € N. '

If p > 2, the estimate of Lemma 7.2 immediately follows. If p = 2, the only
critical case is where g = 1p or W = F. Then ¢ < dim(V) = 2m + 1,
dim(Cy(P)) = m + 1 and we obtain

dim(Cy(P) = m+1 < (¢ + 1/(20)) - (2m+1) = (¢ + 1)/(29)) - dim(V).
7.3 Theorem (Espuelas). Let G be a solvable group, p an odd prime,

P € Syl,(G) and 0,(G) ='1. Let V be a finite and faithful G-module with
char (V) = p. Then P has a regular orbit on V.

Proof. We proceed by induction on |G| [V].
Step 1. G = O"'(G) is p-nilpotent with nilpotent p-complement F = F(G).
Proof. Since P < OP(G) and 0,(07(G)) = 1, induction yields G =

07 (G). We also have O,(FP) = 1 and thus, again by induction, G = F'P

is p-nilpotent with p-complement F'.

_ Step 2. V is an irreducible G-module.

Proof. We first decompose V = I1 ®---&® I, into indecomposable G-modules
I; and pick an irreducible G-submodule M; < I; (j =1,...,n). Since G



is p-nilpotent, Proposition 7.1 implies that each G-composition factor of
I is isomorphic to M;. Consequently, we obtain for the p'-group F that
Cr(M;) = Cp(;) and thus (i, Cp(M;) = ()}, Cp(I;) = Cp(V) = 1.
Since 0,(G) = 1, G acts faithfully on the completely reducible module
M, ®---@® M, and the inductive hypothesis implies V=M@ ---®M,. If
n > 1, then P/Cp(M;) < G/CG(Mj) has a regular orbit on M;, generated
by v; € M; (j =1,...,n). Since then v = vy 4 --- + v, generates a regular
orbit for P on V, Step 2 holds.

Step 3. V is quasi-primitive.

Proof. Suppose there is M < G such that Vu=Vid-- @V, withm>1
homogeneous components V; that are tfansitively permuted by G. It follows
from Clifford’s Theorem that V; is an'irr_educible Ng(V:i)-module and hence
0,(Ng(Vi)/Ca(V;)) = 1. Note further that

Np(Vi)/Cp(V:) = Np(Vi)[(Ca(Vi) N N p(V2))
= Np(V))Ca(Vi)/Ca(V:) < Na(Vi)/CalVa).

Since m > 1, the inductive hypothesis shows that Np(Vi)/Cp(V;) has a

regular orbit on V; (1 =1,...,m).

“

Also P permutes the subspaces Vi, ..., V,, (possibly intransitively). Since
P > 2, the €xceptional cases of Lemma 4.3 cannot occur, and P has a regular

orbit on V. This completes Step 3.
As an immediate consequence, we obtain

Step 4. Let Z = Z(F). Then VzEW®---@®W for an irreducible Z-module
W, Z acts fixed-point-freely on W and |Z] | W] — 1.

Step 5. P < Cg(Z), ie. Z = Z(G).

Proof. Set C' = Cp(Z) and assume C' < P. Note that 0,(ZP) = C and
F(ZP/C) = ZCJC. Let 0 =Vy <V} < --- < Vi = V be a composition

P S

series of V' considered as a Z P-module. Then each V]-/Vj_l is an irreducible

and faithful ZP/C-module. By Step 4, A '
(VilVi-D)zcjc = (Vi/Vis)z =2 WS- @ W,

and it follows from Lemma 2.2 and Corollary 2.3 that (V;/Vj_1)z = W

(7 = 1,...,t) and that ZP/C is a subgroup of a semi-linear group. In

particular P/C = (ZP/C)/(Z2C{C) is cyclic.

Since C < P and O,(FC) = 1, we may apply the inductive hypothesis

to the action of FFC on V, and we thus find v € V generating a regular

C-orbit on V. Choose j € {1,...,t} such that v € V;\ V;_,. Since V;/V;_,

is irreducible as a Z-module, V;/V;_; is spanned by {v* +Vj_, l z €7} as
a vector space. By the previous paragraph, P/C is cyclic and we can thus
find y € Z such that C,)/C(ij + Vj_1) = 1. Since v generates a regular
C-orbit and since [Z,C] = 1, v¥ as well generates a regular C-orbit. Thus
Cp(v¥) < Co(v?) =1, and Step 5 holds.

Step 6. Each Sylow-subgroup of F' is extra-special and non-abelian and

|V| = |W|¢, where |F/Z| = e? > 1.

Proof. By Step 3, every normal abelian subgroup A of G is cyclic. Since
07 (G) = G, we conclude F = OP(G) < G' < Cg(A) and A is central in
F. By Step 5, P < Cg(Z) < Cg(A). We now apply Corollary 1.10 with
P < Cg(Z). Because O”'(G) = @, each Sylow-subgroup of F is extra-
special and non-abelian. Since Vp.is homogeneous and G/F = P is a p-
group, [HB, VII, 9.19] implies that Vp is irreducible. Therefore, |V| = |W|°

follows from Corollary 2.6.
Step 7. |P| < (e'8/%)/2.

Proof. Since Op(G) =1 and P < Cg(Z2), P acts faithfully and completely
reducibly on F/Z (possibly over different finite fields). Therefore Theorem
3.3 applies and |P| < (|F/Z[8/%)/2 = ('%/%)/2.

Step 8. |Cy(g)| < |V[*/2 for all g € P#,
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Proof. We pick 1 # h € (g) with h? = 1. Then there exists Q € Syl (F)
such that h ¢ Cg(Q), and the hypotheses of Lemma 7.2 are satisfied for
H = Q(h). Since p > 2, we obtain |Cy(G)| < [Cy(h)| < |V|}/2.

Step 9. We may assume that
(i) |P| > |V]'/?, and
(i) €32 > 210w |5e,

Proof. Since we may assume that P has no regular orbit on V', we have that

V= UgeP# Cy(g) and

Vi< ) ICv() < (1P| - 1)V]'/2,
geEP#
using Step 8. Part (i) follows. By Steps 6 and 7, |V| = |[W|¢ and |P| <
e'%/5 /2. Thus e3? > 210|W/|5¢, proving (ii).

Step 10. Conclusion.

Proof. Since ¢*? < 219.7%¢ for all integers e > 2, it follows from Step 9 (ii)
that [W| < 7. Since char(W) = p is odd, we have that |W| = p is 3 or 5.
Since |Z] ‘ [W|~1, Z has order 2 or 4. Thus Fis a 2-group and ¢ > 1 must
be a power of two. It easily follows now from Step 9 (i1) that e and p are as

in the following table:

e p=|W| V| n:=log,(e?) |GL(n,2)|,
2 3 32 2 3!
4 3 3 4 32
4 ) 51 4 51
8 3 3% 6 31

Note that |V| = |[W]|® by Step 6. Also |F/Z| has order ¢* = 2". Since
P acts faithfully on |F/Z|, we have |P| < |GL(n,2)|,. Thus, in all cases,
[P’| < |V|'/2. This contradicts Step 9 (i), completing the proof. O

7.4 Remark. As follows from Example 7.5 (a) helow, Theorem 7.3 does

not hold for p = 2. If one however requires in addition that P does not
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involve a copy of Dy, then P has a regular orbit on V. Whereas the proof
in the quasi-primitive case runs similarly to the above (and does not rely
on the assumption about Dy), in the primitive case Lemma 4.3 cannot be
applied any longer. It has to be replaced by a result similar to Theorem 4.8.

For details, we refer to Espuelas’ paper [Es 1].

7.5 Examples. (a) Let W = Z; x Z3 be the faithful irreducible S3-module
over GF(2) and G = Sy wr Z;. Then V := W€ is a faithful irreducible
GF(2)[G]-module, O2(G) =1 and Dy & Z, wr Z; is a Sylow-2-subgroup
of G. Furthermore, the orbit sizes of G on V are (1, 6, 9) and Dy has no
regular orbit on V. : :'

(b) Let V be a 3-dimensional vector space over GF(p). We consider

100 1 :
g=10 1 1, h=|0 € GL(3,p).
0 0 1 0

[« )
— O =

Then P = (g) x (h) &£ Z, X Z,. Let v = (z,y,2) € V. If z = 0, then v is

fixed by h € P#; if 2 # 0, then gh™¥/® ¢ P# fixes v. Therefore P does not

have a regular orbit on V. In particular, the hypothesis that OP(G) =11s
necessary in Theorem 7.3.

In his thesis, W. Carlip [Ca.1, 2] replaced the Sylow subgroup in Theorem
7.3 by a nilpotent Hall subgroup H. Under the assumption that both |G|

and p are odd, he proves the existence of a regular H-orbit.

We remark that a faithful module action of G on a finite-dimensional F-
vector space V' always has a regular orbit, provided that | F| = co. Namely V
then cannot be written as the union of a finite number of proper subspaces,

and therefore |J,cq4 Cv(g) < V.



§8  Short Orbits of Linear Groups of Odd Order

In this section, we are looking in quite the other direction, namely we
try to find short orbits # {0} for a solvable group G which acts faithfully
on a finite vector space V. If |G||V]| is odd and V carries a symplectic
G-invariant bilinear form, T. Berger [Be 1] gave an upper estimate for such
~an orbit and we present his result as Theorem 8.4. In §16, we shall use this
theorem to bound the derived length of a (solvable) group of odd order in

terms of its different character degrees.
We start with the following number theoretical lemma.

'8.1 Lemma. Let p and r be distinct odd primes and let n € N such that
r|n. Then (r — D)r(n+1) < 2(p™ + 1)/(p™/" + 1).

Proof. We set a = n/r and have to show that (r — 1)r(ar 4+ 1) <

2(p*" 41)/(p®+1). Observe first that (r— Dr(ar+1) = ar’+r*(1—a)—r <

ar3. Note further
20T+ D/ + 1) =201 - (-P“)')7(1 ~(=p%) = 22(—Pa)j

> 9(prr=1) a2y 2 gpelr=D e _ 1) > gpe(r=2)g,
Tt thus suffices to show that
ré < 2pt(r=2), (8.1)
If > 7, then »® < 2.3772 < 2p*(r=%) and (8.1) holds. If r = 5, then
rd =53 <2.7572 < gpalr=) for p > 7, and
rd =53 <2.32072) <9502 for ¢ > 2.

* Thus (8.1) holds when » = 5, unless p = 3 and a = 1. Check that the lemma
"is also valid then. Let finally r = 3. By (8.1), we may assume that 3% > 2p2.

Since p > 5, this implies a = 1 and therefore

(r—Dp(ar+1)=2-3-4<2(5°+1)/(5+1) <2(p*"+ 1)/(p*+1). O
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In"the proof of Theorem 8.4 we shall need that a certain group extension
splits. A criterion is provided by the following result of Gaschiitz.
8.2 Lemma. Let A be an abelian normal subgroup of G. Suppose that for
&ach prime p and P € Syl,(G), P splits over PN A.- Then G splits over A,
i.e. there exists H < G such that G = AH and ANH = 1.

Proof. We proceed by induction on [A4], and choose a prime divisor p of |A|
and P € Syl,(G). Since PN A is abelian and (|P|, |G: P|) =1, Gaschiitz’s
Theorem ([Hu, I, 17.4]) asserts that G splits over P N A, i.e. there exists
K < G such that G = (PNA)K and (PNA)NK =1.

Let B € Hall,,(A). Then B < K and induction yields H < I¥ such that

I = BH and BN H = 1. Obviously H then is the required complement for
Ain G. O

8.3 Lemma. Let E be an extra-special group of order p***! (n € N), and
V' a faithful irreducible F[E]-module for a field . If ¢ € E\ Z(E) is an
element of order p, then dimx(Cy(g)) = (1/p) - dimx V.

Proof. Let K be an algebraically closed field extension of F. Then V ®
K=W: & &W,, for irreducible Galois-conjugate X[E]-modules W'; and
we may thus assume that F is algebraically closed. Since char (F) # p must
hold, it is no loss to assume that F = C. We denote by x the character
afforded by V. Then x(1) = p™ and x vanishes off Z(E) ([Hu, V, 16.14]).

Therefore x () = p"~' - p, where p is the regular character of (g), and

dlmT(CV(g)) = [X(g)) 1(9)] = pn—l. d

8.4 Theorem (Berger). Let G be a (solvable) group of odd order, p an
odd prime and V a symplectic GF(p)[G]-module with respect to the non-
singular symplectic G-invariant form ( , ). We set dim(V) = 2n. Then
there exists an element v € V# such that |G: Cg(v)| < (p" +1)/2.

N D

.
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Proof. We proceed by induction on |G| + dim(V), and may clearly assume
that V is faithful.

Step 1. V is irreducible.

Proof. If not, we choose an irreducible submodule W of V of smallest
possible dimension. Set dim(W) = m. Since ( , ) is G-invariant, the
subspace {w € W | (w,w') = 0 for all w' € W} is a submodule of W.
Thus the form (, ) is either trivial or non-singular on W. In the first case,

W is totally isotropic, and [Hu, II, 9.11] implies that m < dim(V)/2 = n.

Since |W#| = p™ — 1 is even but |G| is odd, there are at least two different

G-orbits on W# and we find a vector w € W# such that
G+ Calw)] < (0™ - 1)/2 < (" + 1)/2.

The assertion holds in this case. We may thus assume that ( , ) is non-
singular on W. But then.m = 2[ (for some ! € N), and since | < n, the

inductive hypothesis implies the existence of somé w € W# such that
|G: Co(w)] < (' +1)/2 < (p™ + 1)/2.

This completes Step 1.
Step 2. V is quasi-primitive.

Proof. Suppose not, and choose N <I G such that Vy = V; @ --- @ V; with
homogeneous components V; and t > 1. Set H = Ng(V;). By Clifford’s
Theorem, V; is an irreducible H-module, and we argue as in the last step
that the form (, ) is either trivial or hon-singular on V;. Since G transitively
permutes the Vi, the G-invariant form (,) simultaneously is either trivial

or non-singular on each V;.

Set Vit ={veV | (v,v;) =0 for all v; € V;}. For v € V, we consider
the map f, € V" := Hom gp(,)(V;, GF(p)), defined by

fo(vj) = (v,v;), v; € Vj.
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Then
v fm v € V1

induces a G-isomorphism between V/ V]-J‘ and the dual space V*. Since
Vi is completely reducible, there exists an N-module U; such that Vy =
VjJ‘ @ U;. Thus U; = V} is homogeneous and consequently U; = Vi for
a permutation 7 € Sy. If (, ) is trivial on each Vj, then V; Q’Vj'L and
7r(]) #j forall j =1,...,t. Therefore all V; occur in dual pairs (V}, Vi(j))-
On the other hand, t = |G: H| is odd, a contradiction. ‘

We may thus assume that ( , ) is non-singular on each V;. We set
dim(V1) = 2m. By induction, there is v € V# such that |H: Cy(v)] <
(p™ + 1)/2. Since Cg(v) = Cy(v), we obtain

|G: Co(v)| = |G: H| |H: C(v)| < t(p™ 3+ 1)/2,

and we are done provided that t(p™+1) < p™+1. Sincet =n/m and p>3,

it otherwise would follow that .,

> (pn + 1)/(pm + 1) 2 pn/(zpm) — plm—m/z .>_ pt—l/2 2 3!—1/2)

which contradicts ¢ > 3. This proves Step 3.
Step 3. F := F(G) is non-abelian.

Proof. Suppose that F is abelian. By Step 2, Vp is homogeneous and
Corollary 2.3 yields élabelling of the points of V such that G < I'(p?") and
F < To(p*"). By Lemma 2.2, Vr is irreducible. Since F' acts symplectically
on V, [Hu, II 9.23] implies that |F| l p"+ 1.

Let Fy be the Hall subgroup of I’y := I'g(p*") corresponding to the odd
prime divisors of p™ + 1. Then GNFy; = F. We set G; = GF} and claim
that Gy splits over Fy. To establish the claim, we let S € Syl,(G,) for
a prime number s. By Lemma 8.2, it suffices to show that S splits over
SN Fy. We may therefore assume that s | [Fy|, and so s { [T/ F) [, by the
definition of Fy. Certainly, STy splits over Iy, 1.e. there exists U < ST,
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* such that STy = ToU and TyNU = 1. Now S € Syl,(STp) and so there
exists ¢ € I'g such that V := U9 < §. In particular, STy = T,V and
FoNV = 1. This implies S = TyV NS = (DN S)V = (Fi N S)V and
VA(SNF)=VNF <VNTy =1 Thus G, splits over Fy, and there
exists Hy < Gy such that Gy = F1H, and F;NH, = 1.

As Hy 2 G1/F, = G/(GN Fy) = G/F is cyclic, we may write Hy = (T)

for a semi-linear transformation -
T=Tyo:x+ az’ (ac€ GF(pQ")#, T € Gal(GF(pz"/GF(p)))).

Let t = o(0). Then T'(z) = a - a"...a"l—l_ 2% = (a-a°. .a® ")z for
all z € GF(p*™). Consequently, since Fy < Ty and Fy = F(G,), we obtain
T*e€TyNH <Cq(F)NH =FRNH =1 Thusa-a...a" " =
1 and a is contained in the kernel of the norm map from GF(p?™")# to
GF(p>*/")#. By Hilbert’s Theorem 90 (see [Ja 1, Theorem 4.28]), there is
v € GF(P™#* =V# witha=v - (v71)?. But then T(v) = av® = v and
H; < Cg,(v). Thus : ‘

G: Co(v)l < 1G1: Ca, (v)| |Gy Ha| = |[Fy| < (p™ +1)/2,

and Step 3 is complete.
Step 4. Conclusion.

Proof. Since F is non-abelian of odd order, Corollary 1.10 yields an extra-
special normal subgroup E of G with exponent r and order |E| = r2t+l (5
an odd prime, t € N). Set C' = Cg(Z(E)), Then |G: C| | r —1, and C
fixes the non-singular symplectic form on E := E/Z(E). By Corollary 2.6,
rt | dimgpp) V = 2n. Now |C| + dim(E) = |C] + 2t < |G| + dim(V) and
the inductive hypothesis yields an element 1 £z €FE (z € E) such that
|C: Ce(z)] < (r'+1)/2. Set H = Cc(z) and M = (z,Z(E)). We apply
Lemma 1.5 to M and H/Cp(M) (in the role of E and A there). Since
Cu(M) = Cu(z), it follows that |H: Cy(z)| | r.

Now ]J # r, and we have V = C;/.(ﬁi) ®[V,z]. Let v € Cy(z) and

Coabage

wr —w € [V, z]. Therll
(v,wz —w) = (ve ™t w) — (v,w) = (v,w) — (v,w) = 0.

This shows that the form (, ) is still non-singular when restricted to Cy(z).
As Vg is homogeneous, Lemma 8.3 implies that dimgp(;) Cv(z) =

(1/r) - dimgpE)V = 2n/r. We now apply induction to the action of
L := Cg(z) on Cy(z), and obtain |L: Cr(v)| < (p™/" + 1)/2 for some
v € Cy(z)#. To finish the proof, we gather what we have so far, namely

|G: Cg(v)| £ |G: L] - |L: Cp(v)]
<|G: C|-|C: H|-|H: Cx(a)| - |L: CL(v)]
<(r=1)-(r' 4+ 1)/2 - (P 1)/2

<(r—-1)(n+1)-r- (p"/r +1)/4,

because r! ‘ n. Now Lemma 8.1 applies, and |G: Cg(v)| < (p™+1)/2, which

was to be shown. ‘ 0

8.5 Example. If |G| is even or p = 2, then the assertion of Theorem 8.4
definitely does not hold. The symplectic group Sp(2n,p) namely contains
a cyclic irreducible subgroup S of order p™ + 1, the so-called Singer cycle.
Since S acts fixed-point-freely on the natural GF(p)-module V of dimension
2n, all S-orbits # {0} have length p™ + 1.

We show how to construct the Singer cycle inside Sp(2n,p)“.
(1) Let ¢ = p", Vo = GF(¢*), and fix some a € GF(q*)\ GF(q). Set

(v,w)=a-(vw? —viw) + (a- (vw? —viw))?, v,w € V.

Let s € I'g(¢?) denote an element of order ¢ 4+ 1. Then ( , ) is a symplectic
s-invariant GF(q)-bilinear form on V;. We claim that (, ) is non-singular.
Since (s) acts irreducibly on Vj, it suffices to show that ( ,*) does not vanish

on Vp. Choose z € GF(¢*)\ GF(q). Then

(.’c,l):ci-(x—xq)»kaq-(mq—m)=(a—aq)-(m~xq)#0.

ey
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(2) Consider V, as a GF(p)-vector space V of dimension 2n, and set

[v,w] =tr G'F(q)/GF'(P)(vvw)’ v,w eV.

It is then easy to check that [, ] is a symplectic s-invariant G F(p)-bilinear

form on V, which is non-degenerate. Clearly, (s) of order p™ + 1 acts irre-
ducibly on V.

In Huppert’s paper [Hu 3], Singer cycles are also constructed in the or-

thogonal and unitary groups.

8.6 Remark. Odd order symplectic groups in odd characteristic also be-
have well with respect to long orbits, as A. Espuelas [Es 2] showed. His

results runs as follows. Assume that the hypotheses of Theorem 8.4 hold.
Then G has at least two regular orbits on V.

Chapter III
MODULE ACTIONS WITH LARGE CENTRALIZERS

9  Sylow Centralizers — the Imprimitive Case

In the next two sections, we study a situation where a solvable group G
acts faithfully and irreducibly on a finite vector space V and each v € V is
centralized by a Sylow p-subgroup (for a fixed prime divisor p of |G|). The
basic thrust is to show that the examples given in 9.1 and 9.4 are essentially
the only ones. If V is a quasi-primitive G-module, we show in Section 10
that G < I'(V) (compare with Example 9.1) or G < GL(2,3) and |V| = 3%
In this section we assume that G is imprimitive and O?' (@) = G. Choose
C < G maximal such that V¢ is not homogeneous and write Vo = V1 ®-- - &
V., for homogeneous components V; of V. The main result (Theorem 9.3)
employs Gluck’s result in Section 5 to show that n = 3, 5 or 8, G/C 2 Dy,
Dy or AT'(2%) and pis 2, 2 or 3 (respectively). Furthermore, C' transitively
permutes the non-zero vectors of V; for each :. Then Huppert’s results of
Section 6 apply and C/Ce(V;) < F(VJ unless |V;] is one of six values. The
remainder of this section, somewhat technical, exploits these facts to gi‘v‘e"

detailed information about the normal structure of G.

9.1 Example. Let ¢, p be primes and n an integer such that p{ ¢™ —1. Let
V be an n-dimensional vector space over GF(gq). Suppose that H < I'(V) =
I'(¢g™) and p | |H|. If v € V, then Cg(v) contains a Sylow p-subgroup of H
(and of course of O”'(H)). Also, O (H) acts irreducibly on V.

Proof. Since I' := I'(V) acts transitively on V#, we have for v € V# that
IT': Cp(v)| = ¢" — 1. Thus Cp(v) contains a Sylow p-subgroup of I'. Since
H 4T, we have PN H € Syl,(H) for all P € Syl,(T'). Consequently, C;(v)

contains a Sylow p-subgroup of H for all v € V. It remains to show that
L := OP'(H) acts irreducibly on V.
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The last paragraph implies that for all v € V/, Cr(v) contains a Sylow p-
subgroup of L, and therefore O, (L) acts trivially on V. Thus O,(L) = 1 and
L has at least two Sylow p-subgroups. For v € V#, Cr(v) ST/Te(V) and
is cyclic. Thus C(v) contains a unique Sylow p-subgroup. If V.= W, @ W,
for L-submodules W; # 0, we may choose w; € VVi#, and P; € Syl,(L) with
P, # P,, and P," the Sylow p-subgroup of Cr(w;). Then Wy 4+ wq is not
centralized by a Sylow p-subgroup of L. This contradiction implies that

L = OP (H) acts irreducibly on V. O

If 7 is a non-empty set of prime divisors of n, each of whicli is coprime to
q" —1, then o~ (T(V)) acts irreducibly on V, and each v € V is centralized
by a Hall 7-subgroup of O™ (I(V)). This follows immediately from the

above example.

9.2 Lemma. Assume that G acts faithfully on a finite vector space V and

241G : Cg(v)] for all v € V. If |G| is even, then char (V) = 2.

Proof. View V as a multiplicative group and form the semi-direct product
‘H = VG. Since G acts faithfully on V, we may choose v € V and an
iavolution ¢ € G such that v* # v. Let y = v™'0vf, so that y € V#. Now
gt = ()= (v = y~1 and t € Ng({y)). The hypotheses imply
that Ng({y))/Cq(y) has odd order and t € Cq(y). Thus y™' = y' = y.
Since y # 1, char (V') = 2 follows. O

9.3 Theorem. Suppose that a solvable group G acts faithfully and irre-
ducibly on a finite vector space V and each v € V is centralized by a Sylow
p-subgroup of G (p a fixed prime). Furthermore, assume that C 4aG,
p l |G/C|, that Ve = Vi@ --- @ Vy for C-invariant subspaces Vi, and that
G/C primitively and faithfully permutes {Vy,...,V,}. Then

(a) n=3,50r8 andp=2,20r3 (respectively);

(b) G/C is isomorphic to Dg, Do or AT(2%) (réspectively); and

(c) C/Cc(Vi) acts transitively -on Vi# for each 1.
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Proof. Lfet 1 <t<nandletu; € Vi#' Set v = (u1,...,u,0,...,0) € V.
Then a Sylow p-subgroup P of G centralizes u, and so P and PC/C stabilizes
{Vi,...,Vi}. Likewise, every A C {Vi,...,V,} is stabilized by a Sylow p-
subgroup of G/C. Since p [ |G/C|, parts (a) and (b) follow from Corollary
5.8.

For part (c), first assume that n = 8, G/C & AI'(2®) and p = 3. Ob-
serve that a Sylow 3-subgroup of G/C has orbits of size 1, 1, 3 and 3 on
{V1,...,Vs} and that stab g;c{V1,V2,Vs} & Z3 is a Sylow 3-subgroup of
G/C. Let z, w € Vl#, y € Vz# and z € Vs#- Now (z,v,7,0,...,0) and
(w,y,2,0,...,0) are centralized by Sylow 3-subgroups @ and Qq of G (re-
spectively). Then Q,C/C = stab g;c{V1,V2,V3} = Q2C/C. In particular,
there exist a, b € Q;C such that 2% =y, y* =z, 2® = z, w® =y, y* = z and
2% = w. Now ab~! stabilizes each of Vi, V2 and V3. Since only the trivial
element of stab g,c{V1,Vs,V3} = Z; stabilizes each of V4, V3 and Vi, we
have that ab~! € C. Now %' = w. Hence C transitively permutes the

non-identity elements of V;. Part (¢} now follows in the case when n = 8.

To prove (c) when n = 3 or 5, G/C = D,, and p = 2, observe that
stab gyc{V1,Va} = Z,. If z, w € Vl#, choose y € V2# and consider the
vectors (z,v,0,...,0) and (w,y,0,...,0) in V. Arguments like those above

show that C is transitive on V1#~ O

Note that if C is chosen maximal with respect to C < G and V¢ non-
homogeneous, then G/C faithfully and primitively permutes the homoge-

neous components V; of V¢ (see Lemma 0.2).

9.4 Example. Let p be 2 or 3 and let ¢™ be a prime power such that
ptgm—1 Ifp=2letnbedordand H =Dy, Ifp=23 letn =28
and H = AI'(2%). Observe that H is a primitive permutation group on n
letters, and let G = I'(¢™) wr H (w.r.t. this permutation action). Then G
acts faithfully and irreducibly on a vector space V of dimension mn over
GF(q). We let m be the set of prime divisors ¢t of |G| which do not divide

q™ — 1 or |H|/p, (in particular, each ¢ in 7 must divide m or cqual p).

L)
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We claim that each v € V is centralized by a Hall w-subgroup of G. Now G
has a normal subgroup Go = T'(¢™)x---xI'(¢™), GoH = Gand GoNH = 1.
Also V. = Vi ® --- @ V, for irreducible Gy-modules V; that are permuted
by H. Fix v € V#. Without loss of generality, v = (vy,...,v1,0,...,0) for
non-zero v; € V; (1 = 1,...,1). Let X = {(wy,...,w,0,...,0) ’ w; # 0}.
Observe that Gy transitively permutes the elements of X, and X is the

Go-orbit of v. In particular, |Gy : Cg,(v)| = (¢™ — 1)".

Suppose z = (zy,...,2,) € V and A = {j | z; # 0}. Then v and z
are G-conjugate if and only if {1,...,!} and A are H-conjugate. Hence
|G: Ca(v)| = (¢m—=1)!-|H: stab y({1,...,1})]. Sincen =3, 5 or 8, and H
is Dg, D)o or AT(2%), p does not divide the index of any set-stabilizer (i.e.
the converse of Corollary 5.8 holds). Thus |G : C(v)| is a 7’'-number.

Theorem 9.3 gives us important information when V is an imprimitive G-
module, O? (G) = @, and each v € V is centralized by a Sylow p-subgroup
of G. We will apply this in Sections 10 and 12, and hence we will need more
specific information. The remainder of this section will study this situation

in more detail; although we first give a general proposition.

9.5 Proposition. Assume that C; < C and ﬂ_i C; = 1. Let F;/C; =
F(C/C;), let v be a prime and R;/C; € Syl.(Fi/C;). Set I = F(C) and let
R be the Sylow r-subgroup of F. Then
(a) F=[); Fy;
(b) R=(); Ri; and .
(c) If r $ |C/Fy| for all i and D; = Cc(R;i/C;), then R € Syl (C) and
(; Di = Cc(R).

Proof. (a) Let H = [); Fi. Then HC; < F; for all i and the final term
H* of the descending central series of H lies in C;. Thus H*® < N; Ci=1
and H is a normal nilpotent subgroup of C, whence H < F'. But F'C;/C} is

a normal nilpotent subgroup of C/C; and thus F < F; for all 1. Therefore
F = H, proving (a).
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(b) Now RC;/C; < O.(C/C;) = R;/C; for all ¢ and so B < [, R;. If
S = ﬂiRiv then § < C and S/SﬂC,- = SC,‘/C’{ < R;/C{. So S/SmCi is
an r-group. Since (|Ci =1, S £ 0,(C) = R, proving (b).

(c) Assume r | |C/F;| for all i. Then r } |C/Ry| for all i, whence by
(b), C/R = C/(N; R:) <I[;C/Ri is an r'-group. Hence R € Syl,(C), and
RC; < R; implies that RC; = R;. Therefore C¢(R) centralizes R;/C; and
so C¢(R) <[); Di. On the other hand, [; Dy, R] < [D;, R] < C; for all j.
Hence [); D; < C¢(R), and (c) follows. O

9.6 Notation. Throughout the remainder of Section 9, we will be assuming

. that G satisfies the hypotheses of Theorem 9.3. We will let C; denote C¢(V5)

and let F;/C; = F(C/C;). Also, write |V;| = ¢™ for a prime ¢ and an integer
m. Also F' will denote F(C). Recall that by Theorem 9.3, p € {2,3} and
N;Ci=1.

Next is a corollary to Theorem 9.3.

9.7 Corollary.
(a) Ifp=2, then ¢ = 2.
(b) If p=3, then ¢ = 3 or m is odd.
(c) If g™ # 3% or 3*, then F;/C; and C/ F; are cyclic groups whose orders
divide (¢™ — 1) and m (respectively).
(d) If ¢™ # 32, 3* or 2%, then there is a Zsigmondy prime divisor r of
g™ — 1, and if R;/C; € Sylr(C’/C,-), then F; = Cc(Ri/C,‘) > R;.

(e) If ¢™ = 2%, and R;/C; € Sylz(C/C;), then Cc(Ri/Ci)/ Fi has order
at most 2 and F; > R;.

Proof. Since C acts transitively on Vi#, we have that [C': Co(z)| = ¢™ -1
for each z € Vi#. The hypothesis on centralizers implies that p { ¢ — 1.

Parts (a) and (b) follow immediately. (Of course, (a) is also a consequence
of Lemma 9.2.)
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We may now assume that ¢™ # 3% or 3%. Since C'/C; acts transitively
on Vi#, we may apply Theorem 6.8. By parts (a) and (b) above, nonc of
the exceptional six values of q™ can occur here. We thus conclude that
C/C; <T(¢g™). If, in addition, ¢™ # 29, the Zsigmondy Prime Theorem 6.2
together with (a) and (b) imply that ¢™ —1 has a Zsigmondy prime divisor
r. By transitivity, r | |C/Ci|. Parts (c) (except for the case ¢™ = 2°) and
(d) now follow from Corollary 6.6 and Lemma 6.4.

To complete the proof, we can assume that ¢™ = 2° and must prove (c)
and (e). By transitivity, 3%-7 ’ |C/Ci|, and by the last paragraph, C/C; <
[(2%) =:T. Let S and T be the unique subgroups of I'y := I'y(2%) of order
3 and 7 (respectively). Then ST < F;/C;, T = R;/C; and Lemma 6.5 (b)
yields F;/C; < Cgyc,(ST) < Cr(ST) = I'y.. Therefore F;/C; = C/CiN Ty
and parts (c) and (e) follow, since |Cp(T)/Ty| = 2. : O

For an abelian p-group P, the rank of P is m when p™ =|{x€le” =1}
For an abelian group A, rank (4) = max{rank (P) | P € Syl,(4)}.

9.8 Lemma. Assume that ¢™ # 32 or 3'. Then
(a) F and C/F are abelian of rank at most n.
(b) The exponent of C/I divides m.

(c) If g™ # 25, there exists a Zsigmondy prime divisor r of ¢™ — 1; and

for every such r and R € Syl,(C), we have 1 # R < F = C¢(R).

(d) If ¢™ = 26 and R € Sylz(C), then 1 # R < F < CC(R). and
Cc(R)/F is a 2-group.

Proof. By Proposition 9.5, F' = [, Fi and thus C/F < [[I_, C/F;. But
each C/F; is cyclic and |C/F| I m, by Corollary 9.7 (c¢). Hence C/F is
abelian, rank (C/F') < n and exp(C/F') ‘ m. Now F/(FNC;) =2 FC;/C; <
F;/C;. Since ((FNC;).=1, we have F' <[], F;/C; and F is abelian of
rank at most n, by Corollary 9.7 (¢). This proves (a) and (b).

~1f qr’".% 28 Corollary 9.7 (d) yiclds the existence of a Zsigmondy prime
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divisor r of ¢ — 1. If ¢™ = 2%, we let » = 7. In all cases, r | |IC/C;) by

Corollary 9.7, but » { |C/F;]. Parts (c) and (d) now follow by Corollary 9.7
(d), (e) and Proposition 9.5. - O

© 9.9 Corollary. Assume that ¢™ # 32 or 3. Suppose that H < F, H 9 G

and Cg(H) £ C. Then H is cyclic.

Proof. Let L/C be the minimal normal subgroup of G/C and note that
L/C transitively permutes the V; and hence also the H N C;. Since we have
Cg(H) £ C,L < C-Cg(H). Thus Cg(H) permutes the HNC; transitively.

In particular, HNC, = HNCy =--- = HNC, = 1, with the last equality
holding because [, C; = 1. Then H 2 HC,/C, < FC/C, < F,/C,. Now
Fy/C is cyclic by Corollary 9.7 (¢). Thus H is cyclic. . O

9.10 Lemma. Assume that O” (G) = G, p 1 |C| and ¢™ # 3% or 3*. Then
(a) [G,C] = C. :
(b) If1 # S/F € Syl,(C/F) for some prime s, then C/F = Ceg/r(S/F).
(c) If1# S/F € Syl,(C/F) and p = 3, then s = 2 or rank (S/F)>1.

Proof. Recall that we have C < L < K < G with |[L/C| = n, L/C a chief
factor of G, and |G/K| = p. If p =2, then L = K. Also L/C transitively

permutes the V;, and hence the C; and Fi.

(a) We may assume that there exists A < G' with 4 < C, C/4 < Z(G/A)
and |C/A| prime. If the nilpotent group L/A is non-abelian, then |L/A|
is a prime power and C/A = Z(L/A) = ®(L/A) = (L/A)". Hence L/A is
extra-special and |L/C| is a square, a contradiction as |[L/C| = n € {3,5,8}.
Hence L/A is abelian. Since L/C is an irreducible faithful G/L-module, we
may write L/A = U/A x C/A with U <9 G and U/A G-isomorphic to L/C
(note_(lG/Ll, IL/C[) =1). H(|G/L], |C/A|) = 1, then G has a factor group
isomorphic to L/U = C/A, contradicting the hypothesis that 07 (@) = G.

N
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Thus |[C/A| | |G/L|. Since p { |C], in fact |C/A| | |K/L|, whence p = 3
and |I{/L| =7 = |C/A| = |L/U|. Then |G/U| =3 7% |Z(G/U)| = 7 and
O7(G/U) < G/U, a contradiction to 0% (G) = G. This proves (a).

(b) We now assume that 1 # S/F € Syl,(C/F). Since C/F is abelian
(by Lemma 9.8), C/F < Cg/p(S/F). Since we wish to prove that C/F =
Cg/r(S/F) and since L/C is the unique minimal normal subgroup of G/C,
we assume that L/F < Cg/p(S/F). Now FF < F;nS < S for each i.
Since L transitively permutes the F; and likewise the F; N'.S, and since
L/F centralizes S/F, we have that ;NS =F,NS =-..=F,NS. But
N(FinS)y= (", Fi)nS=F. Thus F;NS =F and consequently S/F =
S/(FynS) = SF/F, < C/F. By Corollary 9.7 (c), S/F must be cyclic
and so G/Cg(S/F) is abelian. Since (G/L)' = K/L and L < Cg(S/F), we
now have that S/F < Z(K/F).

Let P € Syl,(G) and note that |P| = p because p { |C|. We claim that
P centralizes S/F. First observe that Pi'stabiliz;es some V;, without loss of
generality P < Ng(V1). Set H = PC, hence H/C = P has order p. By the
last paragraph, S/F is H-isomorphic to a subgroup of C'/F}. For the claim,
it therefore suffices to show that P centralizes C/F;. We may thus assume
that O,(H/C:1) =1 and that Fy/Cy = F(H/C}). In particular, H/C; acts
faithfully on Vi because C/C; does. Also, H/Cy transitively permutes Vx#-
Since |V;| # 3% nor 34, it follows from Corollary 9.7 (a), (b) and Theorem
6.8 that H/C, < T'(¢™). In particular, (H/C,)/F(H/C1) = H/F; is cyclic,
and P centralizes C/F;, as desired. We have established our claim that
P < Cg(S/F).

By the last two paragraphs, S/F is centralized by {P = G. Let U/F
be the Hall s'-subgroup of C/F. Since C/F is abelian and S/F # 1, we
have that [G,C] < U < C, contradicting part (a). This contradiction arises
because we assumed that C/F > Cg/p(S/F).

(c) We now assume that p = 3 and that 1 # S/F € Syl,(C/F) for a .

prime s > 3. By (b), we have C/F=Cgp(S/F), ie. G/C acts faithfully

Chap. 111 MODULES WITH LARGE CENTRALIZERS 195
on the abelian group S/F. Since L/C is a 2- group and s # 2, L/C acts
faithfully on (S/F) = {g € S/F | g° = 1}. In fact we may choose
Y<X<Q 1(S/F) such that X/Y is a chief factor of G and L/C acts
faithfully on X/Y. Since L/C is the only minimal subgroup of G/C, X/Y
is a faithful G/C-module and Cx;v(L/C) = 0. But K/C is a Frobenius
group of order 2° - 7 and so dim(X/Y) > 7 by Lemma 0.34. Consequently,
[:(S/F)] > s7 and rank (S/F) >17. - O

9.11 Corollary. Assume that p = 2, 0% (G) = G and 24|C). If g™ # 28,
let r be a Zsigmondy prime divisor of ¢™ — 1. If g™ =2% thenletr =7. If
R is the Sylow r-subgroup of F' and C > F, then rank (R) = n,

Proof. Now 1#C/F has odd order and exp(C/F) )|m, by Lemma 9.8 (b).
So m is divisible by an odd prime. As q" = 2™ (see Lemma 9.2) and
™ # 2% nor 2, ris not 3 or 5. Consequently » t1G/C|, because G/C = Dg

or Dyg. Since |C/F| is odd, Lemma 9.8 (c), (d) implies that R € Syl, (G)
and Cc( ) F.

Now €' < L < G with |G/L| = 2 and [L/C| = 3 or 5. Since C > F, it
follows from Lemma 9.10 (b) that L/F is non-abelian. Since C/F acts faith-
: and thus L/F acts faithfully and
completely reducibly on Q4(R) = {z € R J = 1}. Thus there exists an
irreducible L/F-module X < Q,(R) such that L/CL(X) is non-abelian. In
particular, ' < C(X) < C, and L/C(X) has a normal abelian subgroup
C/CL(X) of prime index n € {3,5}. Consequently, dim(X) > n because
r 1 |L/Cr(X)| and every absolutely irreducible faithful L/C(X)-module

in characteristic r has degree n. Thus [2:;(R)] > r™ and n > rank (R). By’
Lemma 9.8 (a), rank (R) = n. O

9.12 Lemma. Supposc that p = 3, that E < G and E is an abelian S-

group for a prime s, s |L/F|. Assume that Ca(E) < C. Also assume that
g™ # 3% or 3*. Then rank (E) > 7.
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Proof. Set B = Cg(E). The hypotheses and Lemma 9.8 imply that E <
F < B < C. Note that K/C"is a Frobenius group of order 2% - 7 with
Frobenius kernel L/C' of order 2.

We claim there exist subgroups B < J < H < @ such that J/B is
abelian, H/B is non-abelian, |H/J| =7 and s {|J/B|. If L/B is abelian, we
let J =L and H = I. Since s { |L/F| and I{/C is non-abelian, the claim
holds in this case. We thus assume that L/B is non-abelian. Set J = C
and H/C € Syl;(G/C). Then st |J/B|. We need just show that H/B is
non-abelian. If not, then H < C5(C/B). Since L/C is the unique minimal
normal subgroup of G/C, we have that C¢(C/B) contains L and LH = I{.
Because B < L'B < C and C/B < Z(K/B), we may choose B < D < C
such that L/D is non-abelian and C/D is cyclic. Since L/C is a chief
factor-of I, it follows that-C/D = Z(L/D) = Z(I /D). Furthermore, every
normal abelian subgroup of I{/D must be contained in C/D = Z(IK /D). By
Corollary 1.4, |L : C| = |F(I{/D) : Z(I{/D)| is a square. Since |L : C| = 23,

this contradiction establishes the claim.

Now let 1 = Ey < F} < --- < By, = FE with each E;{,/E; an irreducible
H/B-module. Since 1 # (H/B)' < C/B and s { |(H/B)'|, it follows that
for some j, (H/B)' # Cup(Ej+1/E;). Thus T := H/Cy(E;41/Ej) is
non-abelian. Now T has an abelian normal subgroup of index 7. Thus
7 | dim(Ej4.1/E;) and rank (E) > 7. O

8§10 Sylow Centralizers — the Primitive Case

We continue to study the situation where V is an irreducible G-module
and every element is centralized by a Sylow p-subgroup of G, but our em-
phasis now will be on when V is quasi-primitive. Actually, we just assume
that V is pseudo-primitive. Recall that V is called pseudo-primitive if Vy is
‘homogeneous for all characteristic subgroups NV of . So the results of the
last section still come into play, specifically in Lemma 10.1. If V is pseudo-

primitive and Cg(v) contains a Sylow p-subgroup of G (for all v € V and a
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fixed prime divisor p of G), then G < T(V) or |V| € {32,29) (seé Theorem
10.5).

10.1 Lemma. Suppose that a solvable group G # 1 acts irreducibly and
faithfully on a finite vector space V such that each v € V is centralized

by a Sylow p-subgroup of G. Assume that OP’(G) = G and V is pseudo-
primitive. Then either

(i) Every normal abelian subgroup of G is cyclic; or

(i) V] =25 p=2=|G:F(G), F(G) is an extra-special 3-group of
exponent 3 and order 3°, and Z(F(G)) = Z(G).

Proof. The hypotheses imply that 0,(G) < Cg(V) =1, pt|F(G)|, G/G
is a p-group and thus F(G) < G'. Every characteristic abelian subgroup
of G is cyclic, central in G', and thus contained in the center Z of F(G).
We set F' = F(G). If Z = F, conclusion (i) holds. We may assume via
Corollary 1.4 that F = E .'Z where E is a direct product of extra-special
groups, Z N E = Z(E), and |F/Z] = e? for an integer ¢ > 1. (Note that Z

has a different meaning than in Cor. 1.4 and that we do not assume that E
is normal in G.)

We can assume that there exists a non-cyclic abelian normal subgroup
A 2 G Of course, A < F, and V, is not homogeneous. By Proposition
0.2, there e&ists a normal subgroup A < C < G such that Vy is not ho-
mogeneous for all normal subgroups N of G with A < N < C. Moreover,
Ve=U @ ---®U, for C-invariant U; that G/C faithfully and primitively
permutes. In particular, F £ C by the hypotheses of the theorem. By
Theorem 9.3, G/C = Dg, Djp or Al(2}) = J,n = 3,5, 8 and p = 2,
2 or 3, respectively. Thus G/C has a unique minimal normal subgroup
L/C and a unique maximal normal subgroup K/C; of course I{ = I when
p = 2. Since F' £ C, we have that FC = L and FN C = F(C). Conse-

quently, F/F(C) = L/C is a chief factor of G with order n = 3,5 or 28
(respectively).

E]

-

L)

-

s
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-+ F/F(C) centralizes C/F(C). Thus Fj = ---
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If C; = Cc(U;) and F;/C; =
F(C), by Proposition 9.5. Since F/F(C) = L/C as G-modules, F/F(C)
transitively permutes the C; and likewise the F;. But F(C) < F; € C and
=F, =F(C)and C/F(C) =
C/Fy.

We claim that F(C) is abelian, or p = 3 and |U;| = 3%. We may assume
by Lemma 9.8 (a) and Corollary 9.7 (a) that |U;| = 3* and p = 3. It
follows from Theorem 9.3 (c) that C/C transitively permutes the elements
of Ul#. Consequently, Theorem 6.8 implies that either C/C; < T'(3*), or
C/¥(C) = C/F; has order §, 10 or 20. In the first case, [C/C]| is divisible
by the Zsigmondy prime divisor 5 of 3* — 1, and by Corollary 6.6, Fy/C,
and hence F(C) are abelian. In the second case, L/F = C/F(C) has a
normal Sylow 5-subgroup T'/F of ¢rder 5. Now G/ L is non-abelian of order
3.7, and Aut(T/F) < Z4, contradicting 0% (G) = G. This establishes the

claim.

Recall that F/F(C) = L/C is a chief factor of order n = 3, 5 or 2.
Also F' is non-abelian and Z is cyclic. By the last paragraph, F(C) is
abelian or p = 3 and n = 2%, Thus Z < F(C). Since 4 < F(C) < C,
V' does not restrict homogencously to F(C) (see second paragraph) and
the hypotheses imply that F(C) is not characteristic in G. Since F/F(C)
is irreducible, it follows that there exists M < G with Z < M < F(C)
such that F//M = X; & X, for irreducible G- modules X; of order n. Also
G/Cq(X,) = G/Cq(X,) = G/Ce(L/C) = G/L. Since K/L = (G/L),
follows that G/Cg(F/M) < G/L x G/L and |G'/Cq (F/M)| | |K/LJ2.

Since F' = EZ for a direct product of extra-special groups £ and Z =
Z(F), an abelian subgroup B of F' with Z < B must satisfj); |B/Z| < |F/B|
(see [Hu, III, 13.7]). Since Z < M < F(C) < F and |F(C)/M| = |F/F(C)|,
it follows that A = Z whenever I‘(C’) is abelian. By the next to the last
paragraph, M = Z unless possibly p = 3 and |U;] = 3%. For the moment,
assume that M = Z. By the last paragraph |G/ Ca( (/L|%. By
Theorem 1.12, G/F' acts faithfully and completely reduubly on F/<I>( ).

F(C/C;), then (;Ci = 1 and [, F; ="
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Then G’/ F acts faithfully on F/(Z®(G)) and on F/Z. Thus |G’/ F| I ,K/L]2
except possibly when M > Z, p = 3 and |Ui| = 32. In this exceptional case,
=8 and |V| = U)* = 316, Now e = |F 2 ZPM2 s |\ F o M2 =
and e l dlm (V)/ dim(Vy) for, an irreducible Z-submodule Vo of V. Smce
[V =3!°, we have that e = 186, [Vol =3, |M/Z| =4 and |Z| = 2. Now Z =
Z(G) £ ¥(G) and F/®(G) is a completely reducible faithful G/ F-module
whose irreducible constituents are G- isomorphic to X, X3 or a submodule
Y of M/Z. Note that G/Cq(Y) has order 1 or 3 because OF' (G) = G.
Recalling that |K/L|is 1 or 7 for p = 2 or 3 (respectively), we summarize:

|G': Fl =1 when p=2;
[G\i L F | 7* when p = 3.

Also |F/Z] = n?, except possibly when |[F/Z| =4-n% p=3, |Ui| =32 and
Z = 7Z(G) has order 2.

First suppose that p = 3, so that n = 8. We set [Ui| = ¢™ for a prime
¢ and an integer m. Since V7 is homogeneous and Z < C, we have that

|Z] | ¢ —1. Now |Syl3(G)| = |G : Cq (P)| for P € Syl3(G), because G/G'
is a 3-group. Thus

Syla(G)| < 7% 8% |2 < 7%.2° . (g™ — 1), or

. 10.1
[Syla(G)] < 7% - 8% -4 = 7%.2% and ¢™ = 32, (00

Now P permutes the U; in orbits of size 1, 1, 3 and 3. Next we let Xo =

{(u1, ..., u)u; € U;, exactly six u; are non- zero}. Then P centralizes at_

most (¢™ — 1)? elements of X,. The hypotheses imply that each z € Xois -~
centralized by some Sylow 3-subgroup. Hence

Syls(G)] - (¢™ = 1)® > | x| = (g) (g™ = 1)°. (10.2)
Combining (10.1) and (10.2), we get

7202792 (4" — 1), o

72° > 7.22 (™~ 1)t = 7.2 when " = 3%
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The second equation is nonsense and the first only holds when ¢™ < 5.

. Note that 2 divides |F/Z| and hence |Z]. Thus ¢™ is 3 or 5, and Z < Z(G)

because O3 (G) = G. Since m = 1, we have C ='F, and L/F = C/F(C) =
C/Fy =1 (see the third paragraph of the proof). Thus G/L = G/F is
non-abelian of order 37 and F/Z = X, @& X, with each X; a faithful G/F-

module of order 23. Then |Cp/z(P)| = 2%. Since Z < Z(G), |Syls(G)| <
" |K/F|-|(F/Z): Cpz(P)| = 17-2*. This contradicts (10.2). Hence p # 3.

Now p =2 and G/G' = G/F is a 2-group. Also G/C = D,, withn =3
" or 5 and P € Syly(G) fixes exactly one U; and permutes the others in pairs.
Now F(C) is abelian with index n in F, |F/Z| =n? and n | |Z|. By Lemma

9.2, |Ui| =2™ for an integer m.

We claim that L = F. Assume not, so that L/F = C/F(C) = C/F,
is a non-trivial 2-group. Since C/C; transitively permutes the elements of
U¥#, Theorem 6.8 implies that C/C; < T'(2™). Since |T(2™)] = m(2™ — 1)
and 2 I |C/Fi|, m is even. Now a Sylow z-subgrbup Q@ of C centralizes at
~ most 2™/2 elements of U; for each i. Thus Q centralizes at most (2™/2 —
1)™ elements of X = {(uy,...,u,) ‘ u; € U, all u; non-zero}. Since
each element of X is centralized by a Sylow 2-subgroup of C, we have that
ISyla(C)|(2™/2 = 1)™ > |X] = (2™ — 1) On the other hand, |Syl2(C)| <
|F(C)| = n-|Z| <n- (2™ —1), with the last inequality because |Z| | |U;| - 1.
’_Thus n > (2m/% + 1)"/(2"{ —1). Since n = 3 or 5, this is a contradiction.
‘Thcrefor,@, L = F has index 2 in G and C = I(C). As || is odd, we also
have |P] = 2.

Now P inverts the module F/Z of order n?. Since the Sylow n-subgroup
N of F is non-abelian, P-does not induce a fixed-point-free automorphism
of N. Hence P centralizes the cyclic group Z(N). Write Z = Z(N) x S for
a cyclic {2,n}'-group S. Now F'= N x S and Cg(P) =1, as 0¥ (G) = G.
Without loss of generality, P stabilizes U;. Applying.Lemma 0.34 to the
action of SP on Uy, we conclude that Cy, (P) = 2m/2 o § = 1. For the
set X 1= {(u1,...,un) | u; € Ui, all u; non-zero}, we have that |Cx(P)| <
(2m — 1)/, and even |Cx(P)| < (2m/2 - DE™ - 1)*N/2 provided

[SETPIER Y MO UL W bbb v e U vV idd s b, e

that § # 1. Now |Syly(G)| < |F: Cp(P)| = n?|S| < n?|Z|/n < n(2™ —1).
Since each element of X is centralized by a Sylow 2-subgroup of G, it holds
that

n(2™ —1)(2™ = D)™D/2 > x| = (2™ —1)", and

n(2™ —1)(2™ — 1)D2(0m/2 1) > | X| = (2™ —1)" if S #£ 1.

If n = 5, the first inequality implies that 2™ < 6, a contradiction because
n ‘ |Z] | 2™ — 1. Thus n = 3. Should S # 1, then the second inequality
implies that 2™ = 4, whence |Z| = 3 and S = 1, a contradiction. Thus
S =1,1e F = N. Now P centralizes at most 2™ — 1 elements of ¥ :=
{(u1,uz,u3) | u; € Uj, exactly one u; is zero}. Since [Syly(G)| = 32, we
have that 3%. (2™ — 1) > || = 3- (2™ — 1)?, and therefore 2™ = 4. This
means that [V| = 2% |Z| = 3 and F is extra-special of order 3. That F

has exponent 3 follows from Theorem 1.2. O

- 10.2 Lemma. Suppose that V is a finite faithful irreducible G-module,

that O¥(G) = G # 1 and O?(Q) is nilpotent (p a prime). Furthermore
assume that p{ |G : Cg(v)| for all v € V and that V is pseudo-primitive.

Then one of the following assertions occurs:
(i) OP(QG) is a cyclic p'-group;
(i) |[V]=3% p=3=|G:0"(G)| and G = SL(2,3);

(iii) |V] = 2%, OP(G) is extra-special of order 3° and exponent 3, p =
2= |G : 0?(G)| and Z(O?(G)) = Z(G).

Proof. By Lemma 10.1, we may assume that every normal abelian sub-
group of G is cyclic. Let F' = F(G). Since O,(G) < P for all P € Syl,(G),
the hypotheses imply that 0,(G) < Cg(V) = 1. Thus p{ |F|, F = O?(G)
and F' < G'. If A is a normal abelian subgroup of G, then A is cyclic and thus
central in G' > F'. Let Z = Z(F). By Corollary 1.10, F/Z is a completely
reducible G-module and |F/Z| = e? for an iﬁteger e. (Note that Z has a dif-
ferent meaning than in Cor. 1.10.) By Corollary 2.6, dim(V) =t ¢ dim(W)

e

!
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d
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then y = (vy,vs,0) € Y. We choose P, € Syl(G) with P, = Cg(y). Since
P, fixes V3, the last paragraph implies that P, < C¢(V3) and consequently
Py < Cg(v). Part (a) follows.

(z,y) € V is not centralized by a Sylow p-subgroup of G, a contradiction. °

Hence V is an irreducible G-module.

i | We let I = O7(G), F = F(G) and Z = Z(F). Since 0P (G)=G, I{ <

b We finally prove (c) by induction on |Go/G|. For G < H char Gy, we G'. If S 4 G and P € Syl,(G), then PN S € Syl, (S) Thus p1]S: Cs(v )' .
have that Vpr is pseudo-primitive and irreducible, and that each v € V is for all v € V. If S is also characteristic in G, then or (S) and V satisfy the
| centralized by a Sylow 2-subgroup of H. We may assume that Go/G is a Lypotheses of the theorem or p1|S|. Since G is faithful on V, 0,(G) =1
e g-group for a prime q. By Lemma 10.2, we may also assume that ¢ # 2. and p1|F|. Thus F < K < G".
Now let M/F € Syly(Go/F), so that |Go/M| =2 and M char G¢. Either
. g =3 aud M is a 3-group, or ¢ > 3 and M/F centralizes both F/Z and Z. Stepl. V is an irreducible J{-module.
In all cases, M is nilpotent. Apply Lemma 10.2 for a contradiction. O . ’
f : Proof. Let V; be an irreducible J{-submodule of V, and let v € Vo#- Now -
- The hypothesis that O”I(G) = @ in the next ’theorem is more for conve- 4 v is centralized by a Sylow p-subgroup Fo Of‘G' Then Vo is invariant under
¢ nience. We remove it in Corollary 10.5 (but we must also allow the conclu- KPy=G,and Vo=V follows.
b sion G = GL(2,3) when |V| = 3?).
Step 2. We may assume that
[ 10.4 Theorem. Let G be a solvable group acting completely reducibly and | (a) F < I
- faithfully on a finite vector space V such that p{ |G : Cg(v)| for allv e V (b) Z < F; and
I (p a fixed prime). Assume that OT"(G) =G # 1: and that V' is pseudo- (c) Every normal abelian subgroup of G is cyclic and contained in Z
L primitive. Then V Is an irreducible G-module and one of the following and Z = Z(I).
occurs:
L ', (i) O7(G) is a cyclic p'-group and G < I(V); Proof (a)if F = I, it follows from Lemma 10.2 that either I is a cyclic
(i) G=5L(2,3), p=3 and [V|=3% or P -group or conclusion (ii) or (iii) of the theorem hold. As Vi is irreducible,
L (iii) O”(G) is extra-special of order 3* and exponent 3, p =2 = G < I(V) in the first case by Theorem 2.1.
|G : O7(G)|, Z(G) = Z(0?(G)) and |V| = 25. ‘ ’ (b) If F = Z, then F is cyclic and therefore J{ < G' < Cg(F) = F.
Thus F' = I, contradicting (a).
' : (c) By Lemma 10.1, we may assume that-each normal abelian subgroup
[ Proof. We argue by induction on |G]|V]. If V is not irreducible, we may

B of G is cyclic, and thus central in G' > F. Hence B < Z < Z(G'). Since

) write V = X @Y for faithful G-mcidul(?s X and Y, because V is homoge- F <K <G and Z = Z(F), part (c) follows.

neous. Applying the inductive hypothesis, we may assume that G and X
satisfy the conclusion of the theorem. If O?(G) is cyclic or G = SL(2,3),
I then Cg(z) € Syl,(G) for all z € X#. If OP(G) is extra-special of order
- 33, we may choose z € X such that Cq(z) € Syl,(G) (see Example 10.3).

Choose y € ¥ such that Cg(x) does not centralize y. Then the vector
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“for an irreducible Z-submodule W of V and an integer ¢. Since V3 is homo-

geneous, |Z] | [W|—1. If e = 1, then F = O”(G) is cyclic and conclusion .

" (i) holds. We thus assume that ¢ > 2, i.e. F > Z.

Let v € V# and observe that Cz(v) = 1 and ZCp(v) < F. Since v
is centralized by a Sylow p-subgroup Py of G, even ZCp(v) 4 FPy = G.
Now ZCp(v) is an abelian normal subgroup of G. Hence ZCp(v) < Z
and Cp(v) = 1. Consequently, F' acts fixed-point-freely on V. Since F is
. nilpotent and non-abelian, it follows that FF = @ x S with a cyclic group
S of odd order and @) a quaternion group (see [Hu, V, 8.7]). By the first
paragraph, @/Z(Q) is elementary abelian and thus @ = Qg (cf. Proposition
~ 1.1). Since OF'(G) = G, it follows that for P € Syl,(G), Cs(P) = 1,

"'CQ(P) = Z(Q) and p = 3. In particular, then |Syls(G)| = |F : Cp(P)| =
|F: Z(Q)| = 4-|S|. For v € V# we have seen that Cp(v) = 1 and
thus Cg(v) € Syls(G). Hence |[V#| = [Syl3(G)| - {(Cv(P))#| with P ¢
Syls(G). Letting |[V| = ¢™ and |Cy(P)| = ¢™ for a prime ¢, we have
(¢" —=1)/(¢™ —1) =4 -|S|; in particular m | n.

We claim that [G/F| = 3. Assume not. Because G/Cq(Q/Z(Q)) =3
and G/ F is a 3-group, we may choose J < G such that J has a cyclic normal
‘subgroup Jy of index 3, Jy < S, and J is a Frobenius group. Every v € V'is
‘centralized by a Sylow 3-subgroup of J because J 4 G. Let Py € Syla(J).
‘Then |ICy(P)| = |V['/? (see Lemma 0.34). Hence |Jo| = [Syls(J)| 2 [V|*/3
‘and |Z| > |V|*/3. This contradicts Corollary 2.6 which implies that |Z] <
[V|'/%. Hence |G/F| = 3.

If S # 1, then SP is a Frobenius group and ¢™ = |Cy(P)| = |V['/3, by
Lemma 0.34. Thus |Syl3(G)| = 4[S] = (¢*™ -~ 1)/(g™ — 1) =1 + ¢™ + ¢*™,

".a contradiction because the right hand side is odd. Thus § = 1. Now
L 4=14¢"+ -+ +¢""™. Hence V| = ¢" = 3% and Q3 < G < GL(2,3).
© Since O¥ (@) = G, it follows that G = SL(2,3). 0

10.3 Example. Suppose that F = F(G) is extra-special of order 3% and
exponent 3, that |G : F| = 2, Z(G) = Z(F) and 0¥ (G) = G. Then G has
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a unique faithful irreducible module V over GF(2). Furthermore
(a) V| =2%and 2| [Cg(v)| for all v € V.
(b) There exists y € V with |Cg(y)| = 2.
(c) Suppose that G char Gy < GL(V') with Gy solvable and V' a pseudo-

primitive Gg-module. Assume that each v € V is centralized by a
Sylow 2-subgroup of Gy. Then Gy = G.

Proof. Observe that in characteristic 2, G has two absolutely irreducible
and faithful representations, both of degree 3 (see [Hu, V, 17.13]). Hence
over GF(2), G has either exactly one faithful irreducible representation
necessarily of degree 6, or exactly two faithful irreducible representations
both of degree 3. If V is a faithful irreducible GF(EZ)[G’]—module, then
1Z(G)| | V] = 1. Thus [V| = 2% and V is unique. The same argument

shows that Vp is irreducible.

Since G/F inverts F/Z(G), we may choose C' 4 G with C elementary
abelian of order 32. Then V¢ is not homogeneous. But Vj is irreducible
and so Ve = Vi @ Vo @ V3 for homogeneous components V; of V¢ that are
transitively and faithfully permuted by G/C = S3. For ¢ # j, Co(Vi) N
Ce(V;) = 1. Let Y = {(vi,v2,v3) l v; € V,, exactly two v; non-zero}.
Then Cg(y) = 1 and consequently Cp(y) = 1 for all y € Y. In particular,
Cq(y) has order 1 or 2, and y € Y is centralized by at most one Sylow
2-subgroup of G. If P € Syly(G), then P fixes one V; and interchanges
the other two. Thus P centralizes 3 elements of ¥. Since |Y| = 3% and
|Syl2(G)| = |F - Z(G)| = 3%, we have |Cq(y)| = 2 for all y € Y. This

establishes assertion (b).

Say P fixes Vi, so that stab (Vi) = CP. Now C/C¢(Vh) 2 Z(G),
and since [Z(G), P] = 1, it follows that CP/Ccp(V4) has a normal Sylow
2-subgroup. As Vi is an irreducible GF(2)[C P]-module, P < Cg(W1).

We next establish assertion (a), and let v = (vy,vq,v3) € V. If two v;
are zero, say v; # 0, we then choose P; € Syly(@) that fixes V. By the last
paragraph, P, < Cg(V;), and so Py < Cg(v). If however all v; are non-zero,
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Step 3.

(a) F/Z = H\/Zx---xH,,/Z for chief factors H;/Z of G/Z withm > 1.
(b

) Z2=17(H i) and H; = ZF; for an extra-special group F; < G.
(c) [Hi: Z| = f2 for a prime power f; = qr o> 1.
)

(d) If W is an irreducible Z-submodule of V', then dim(V') = te-dim(W)
for an integer t and e = fy--- fr, > 1.

(e) Let C; = Cg(H:/Z). It Ci < H < Cg(Z), then H/C; is isomorphic

to a subgroup of Sp(2n;, ;).

\

Proof. By Step 2, every normal abelian subgroup of G is cyclic and central
in F. This step thus is a consequence of Corollary 1.10 and Corollary 2.6.

(Note again that Z has a different meaning than in Cor. 1.10).

Step 4. If N is characteristic in G and p i [N|, then N = G. In particular,

p 1 |K|, K = G' and G/K is elementary abelian. Also by Step 2 (a),
0,(G/F) = 1. '

Proof. Assume that N is a proper characteristic subgroup of G and p l [N].
Without loss of generality, N = O? (N). Let L = OP(N). By the inductive
hypothesis, V' is an irreducible N-module. By the same argument as in Step
1, V is an irreducible L-module. Suppose that L is cyclié. Then L < Z(G')
and L < Z. But by Step 3 (d), Vz is not irreducible, and so L is not cyclic.
Applying the inductive hypothesis to N, we may conclude either

V]| =3% p=3 and N =SL(2,3),

or
[V]|=2% p=2 and N has the structure described in

conclusion (iii).

In the first case, N I G < GL(2,3). 'Since N < G, we have |G/N| = 2,
contradicting OP’(G) = G. In the second case, N = G by Example 10.3.

Step 5. F/Z is a faithful G/F-module, i.e. (), C; = F.
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Proof. If not, then D := [);C; > F. By Corollary 1.10, f’/Z is a faithful |
G' [ F-module and hence G’ J/FND/F =1. Since G/G' is a p-group, D/F

is a non-trivial p-group. Then O,(G/F) # 1, contradicting Step 4.

Step 6. Let H;/Z be a chief factor of G as in Step 3 with |H;/Z| = f# and
Ci = Cg(Hi/Z). Then

(a) C; < G.

(b) K < C;if and only if f; =2. Also p =3 in this case.

(c) At most one f; equals 2.

Proof. If C; = G, then H;/Z is a central chief factor of G/Z. In this case,.
|Hi/Z| is prime, a contradiction. Thus C; < G, proving (a). :

If f; = 2, then G/C; < S3. As p { |F| and OF(G) = G, we have
|G/Ci| =3 = pand K < C;. To prove (b) and (¢), we may assume for some
je{l,...,m} that ¥ < Ciif and only if i < j. Let H = H,.--H; and
B = Ck(H) 9 G. Now H/Z is central in I and thus I{/B is isomorphic to;
a subgroup of Aut(H) that acts trivially on both H/Z and Z. By Lemma
1.5, |K/B| < |H/Z|. But BNH = Z(H) = Z and hence I{ = BH.
For v € V# v is centralized by a Sylow p-subgroup P; of G and thus.
Z -Cy(v) QHBP, = KP, =G. Since Cu(v)NZ =Cgyv)=1and H/Z
is abelian, Z - Cg(v) is an abelian ‘normal subgroup of G and by Step 2 (c),.
contained in Z. Hence H acts fixed-point-freely on V. By [Hu, V, 8.7], a
Sylow-subgroup of H is cyclic or isomorphic to Qs. Thus |H/Z| = 22 5 =1
and fi = 2. This step is complete.

Step 7.
(a) If f; =2, then p=3.
(b) f: is not 22, 2% or 3.
(c) If f; = 2%, then p=3 and P £ Cg(Z) (P € Syl3(G)).
(d) If f; = 2°, then p =5 and |I&/Ix NGy <2°.3%
(e) Tf fi = 32, then p= 2 and |/ N Ci| <5, 0r p =5 and K/K N C;

is extra-—spcmal of order 2°.



(f) If f; = 3%, then p = 2 and

K/KnCy <313
(g) If fi = g, then p < 3.

Proof. Part (a) is immediate from Step 6 and is restated here for conve-
nience. Assume that f; # 2. By Step 6, C; = Cg(H;/Z) does not contain
K. It thus follows from Step 4 that KC;/Ci = (G/C:)' is a non-trivial p'-
group and G/KC; is a p-group. Since G/C; acts irreducibly and faithfully
on H;/Z, parts (b), (d), (e) and (g) are now immediate consequences of
Lemima 2.16. -

(c) By Lemma 2.16, we may assume that [G/C;| = 3%.7 and p = 3.
Thus G/C; has a cyclic normal subgroup I/C; of order 21 that must act
irreducibly on H;/Z. If P < Cg(Z), then I/C; acts symplectically and
irreducibly on H;/Z. Since I/C; is cyclic, |I/Cy| I 2% +1 (by [Hu, 1I, 9.23]),

a contradiction.

(f) In this case, Lemma 2.16 yields p = 2 and |K'C;/C;| divides 3* - 13*
or 7-13. Since K < Cg(Z), in fact K/K NC; = KC;/C; < Sp(6,3) and so
132t |K/K N C;|. Therefore |K/K N C;] < 3%.13.

Step 8.
(a) e > 5.
(b) If p> 3 and e < 48, then one of the following occurs:
(1) e= f1 = 5% y
(2) e = f1 = 3% p=>5and K/F is extra-special of order 2°; or

(3) e=f1 =25 p=>5and |[K/F| <2°. 3%

Proof. Now e = fy - f,, with each f; > 1 and e > 1 (see Step 3). By Steps
7(b)and 6 (c), e # 3 or 4. If e = 2, Steps 6 (b) and 5 yield F = C; = I,
contradicting Step 2 (a). This establishes (a). Assume that p > 5, so by
Step 7 (g), no fi is prime. Since e = [[,.fi < 48 and F = [, C}, part (b)
follows from Step 7.
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Step 9. Let P € Syl,(G) and W be an irreducible Z-submodule of V. Then
(a) ISyL(G)]- ICv(P) 2 VI;
(b) |V|= W] and
(o) 12| [ W] -1

Proof. Part (a) follows from the hypothesis that every vector is centralized
by a Sylow p-subgroup. Part (b) is just a restatement of Step 3 (d). Since

Vz is Homogeneous and faithful and since Z is cyclic, part (c) follows.

Step 10.
(a) |K/F| < e?/2.
(b) If p = 2, then |K/F| < €*/2.
(¢) If p = 3, then |K/F| < e'/2.
(d) If p =3 and fi =2, then |K/F| < et /25,

Proof. Since If < G we have H;/Z is a completely reducible and faithful
K/K n C; module. By Theorem 3.5, |K/K NGy < (fH*4)2 = f?/z/Q.
Since (),(K N Ci) = F (by Step 5), |K/F| < [I( 212 12) < €*/2/2. Noting
that p 1[I/ F|- |F/Z|, parts (b) and (c) similarly follow from Theorem 3.5.

If p=3 and f; = 2, then I{ < Cy by Step 6 (b). Fori > 1, [I{/KKNC;| <
f#/2 by Theorem 3.5. Since e > 2 (by Step 8 (a)), it follows that m > 2
and N, (KNC;) =K NCyN---N C,, = F. Hence

\K/F| < J[(F12) < (e/2)t/2 = €' /2,

i=2

Step 11. P < Cg(2).

Proof. Assume not. Since I{ < Cg(Z2) and Cg(Z) is a proper characteristic
subgroup of G, Step 4 implies that Cg(Z2)=Kisa p'—‘group. We may thus
choose Py < P with |Py| = p and Py £ Cg(Z) There exists a Sylow
subgroup Zg of Z with ZyPg a Frobenius group. Applying Lemma 0.34, we
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obtain [Cy(Py)| = |V|/P. Thus p | dim(V) and |CV( )| < |VIMP. Since
pte, Step 9 yields that i

ISYL(G)] 2 [W[*®=D/? and p|¢-dim(W), (10.3)

where W is an irreducible Z-submodule of V. Recall that | Z| | W] — 1.
Also [Syl,(G)| < |K| = |K/F|-|F/Z|-|Z|.

First assume that p > 5. By the first paragraph and Step 10,

e*P2\W (/2 > Syl (G)| > |Wte/s,

and so ¢85 > |W|Bte-10 2"’. Note that [W| > 3 because |Z] | W] - 1.
If £ > 5, then €% > 3%0¢=10. 910 ypd ¢ < 5, contradicting Step 8 (a). So
t <5 < p, and (10.3) implies that [W| > 32. Then €55 > 210¢—40 4 q ¢ < 5,
again a contradiction. We thus assume that p < 3.

We next consider the case p = 3. By the first paragraph and Step 10 (c),

e’ |W|/2 > |Syls(G)] > |W|2t/®, "and so (10.4 a)
e1® > W23 . 93 (10.4 b)

Ift. > 3, then e'® > 35¢=3.93 5nd ¢ < 5, contradicting Step 8 (a). By (10.3),
3 l dim(W). If |W]| > 64 then (10.4 L) implies e < 5, a contradiction. If
|W/| = 27, then (10.4 b) implies that e < 8 and so 5 <e< 7 Thisisa
contradiction since each prime divisor of e divides |W|— 1. Hence |W|=28
and (10.4 b) implies that e < 14. Since |Z| ' [W|—1,|2]| =17 =e. Now
F/Z is a faithful irreducible G/F-module of order 7%. Since 0%(G) = G,
it follows from Theorem 2.11 that |G/F| < 96 and [ I{/F| < 32. Then
ISyla(G)| < |K/F|-|F/Z|-1Z] < 32-7%, and (10.4 a) yields that 25 .73 >

g14/3 — 214 a contradiction.

To conclude this step, we consider the case p = 2. By the first paragraph
and Step 10 (1),

c|wl/2 > ISyl2(G)| > |[W]*/?,  and so (10.5 a)
e!? > 4|w|te2, (105 b)

Fach prime divisor of e divides
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Since p = 2, also char (V) = 2 by Lemma 9.2, and thus |[W| > 4. If t > 2,

e'® > 4%~ and e < 9. But 24 e and Step 8 (a) implies that e = 5 or 7.

—1. Thuse =5 and |[W| > 16,0r e =17

and |W| > 8. In both cases, (10.5 b) gives a contradiction because ¢ > 2.

Hence t = 1 and dim(W) is even by (10.3).

If|w|> 25, then (10.5 b) implies that e < 6 and so e = 5 by Step 8 (a).
In this case, 5 | |[W| -1 and so |W| > 28, contradicting (10.5 b). Hence
|[W| = 22 or 2*. Now every prime divisor of e divides |Z| and therefore
[W| —1. Thus e is a {3,5}-number and when |W| = 4, e is a 3-power.
Recall that no f; equals 3 (by Step 7). Using (10.5 b), we have only the

following cases and e = f; in all:
Wi  e=fi |2

(/F|

4 27 3 at most 32 .13
4 9 3 5,
16 9 3 or 15 5
16 5 5 or 15 3.

Note that the order of K/F is determined by Step 7 in the first 3 cases and
by Theorem 2.11 in the last case, as 24 1]&']. By (10.5 a),

[W|*/2 < |Syl,(G)| < |K| = |K/F|-e?-|Z|.

This rules out the first case. In the remaining .cases, | K/ F| has prime order.
Since O2(G/F) =1 and G/K is elementary abelian (see Step 4), we have
that G/F is a Frobenius group of order 2|K/F| that acts faithfully and
irreducibly on F/Z. By Lemma 0.34, |Cp/z(P)| = |F/Z|'/* = e. Thus
|[We/? < [Syla(G) /F| - e-|Z|, which gives a contradiction in each

remaining case.

Step 12. Recall that P € Syl,(G). We have
(a) ICV(P)| < |VI*/® and [Syl,(G)| 2 [W|*“/*; and
(b) If p # 2, then |Cy(P)| < |V|*/? and [Syl,(G)| > |[W|*/2.

Proof. Let Py < P with |Py| = p, and choose a Sylow subgroup Q of F such
that Py £ Cg(Q). Since Vg is homogeneous, Lemma 7.2 applied to QP



. implies that

VY2 ifp#2,

[C‘/(P)IS’CV(POJIS { .
. VP it p =2

Since [Syl,(@)|-|Cv(P)| 2 [V] and [V| = [W|* by Step 9, this Step follows.

" Step 13. p < 5.

Proof. Assume that p.> 5. By Steps 12 (b), 11 and 10 (a), we have
ISyL,(G)| > |W|*/* and | E10.6)

ISyl (&)] <

j&"/FI |F/Z| < e3/2/2. Thus
e' > 4w)e. (10.7)

But |[W| > 3 and hence e < 48. BEvery prime divisor of e divides |Z|, which
in turn divides |W|—1. If e = 5%, then |[W| > 11 contradicting (10.7). Thus
Step 8 implies that

e=2% p=5 and |K/F| <2%.3% or

2

e=3" p=>5 and I{/F is extra-special of order 2°.

~ In the first case, (10.6) implies that [W|'® < |Syls(G)| < 25 - 35 and thus

|[W| < 3, a contradiction. In the second case, a Sylow 5-subgroup P of G

“must centralize Z(I(/F) and so |Syls(G)| = |K/Z : Cyz(P)| <2*.3% By
(10.6), [W]** < 2°.3% Since 3 |e, 3| |W|—1 and hence |W| =4, ¢t = 1
and |V| = |[W|* = 4°. Now P < Cg(Z) and Cy(P) is a Z-submodule of
Vz. Thus [Cy(P)| = 4/ for some j. By Step 12, |Cy(P)| < |[V|1/? = 49/2
and j < 5. Since V = Cy(P) @ [V, P], 5 must divide 4°~7 — 1, and hence
|Cy(P)| 4% By Step 9,4 = |V| < |Syls(G)|- |Cy(P)] < 2¢ 3% .43, This

contradiction completes the step.

" Step 14. p= 2.

Proof. By Step 13, we may assume that p = 3. It then follows fromn Step 12
that

ISyls(G)| = ||/, (10.8)
Since by Step 11 P £ Cg(2), ISyl,(G)| < |K/F|-|F/Z| = |/F|-e*. By
(10.8) and Step 10 (c), (d), we have

e'? > 4|W e, and (10.9)
e23 2% \W|e if fi=2. (10.10)

Since |W| > 3, it follows from (10.9) that e < 48.

Since p=3,3%te. Nowe = f;... f, and no f;is 4, 8, 16, or 32 by Step 7
(b), (), (d). By Step 6 (c), we also have that f; # 2 for i > 1. Also e > 5,
by Step 8 (a). Assume f; = 2 so that m > 2 and f; = qi';” with ¢» > 5.
Since 2 | |F), it follows that [W| # 8, and ¢, [ |W| ~1 implies |W] > 11.
As e > 10, (10.10) gives a contradiction. Hence f; = ¢ for a prime ¢; > 5
(t =1,...,m). Then |W| > 8 and (10.9) implies that e < 16. Thus e =
fi=qis5,7,11 or 13. Now G/F'is an irreducible subgroup of GL(2,q),
(G/F) = K/F # 1 and G/K is a 3-group. Thus part (c) of Theorem 2.11
applies, and since O¥(G) = G, Z(G/F) has index 2% -3 in G/F. Hence
[Syla(G)] < 2% . €%, and inequality (10.8) yields 2% . e? > |W|¢/2 > 8¢/2.

Consequently, e < 5. This contradiction completes the proof of this step.
Step 15. Conclusion.

Proof. It remains to consider p = 2. Since P < Cg(Z), it follows from Step
10 that |Syl,(G)| < |K/F|-|F/Z| < e®/2. By Step 12,

ISylo(G)] > |[W[*/®, and so ‘ (10.11)
€15 > 8[|, (10.12)
Since p = 2, we have by Lemma 9.2 that char (V) = 2.
Applying (10.12), we get the following upper bounds for e, given |W|.

W | 4 8 16 32 64 > 128
upper bound for-e 64 32 16 16 6 4
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Since |Z| | [W| — 1, indeed |W| > 4. Each prime divisor of e divides |Z|
and also divides |W| — 1. Since e > 5, the cases where [W| > 32 yield
contradictions. Now e = fif5--- f,, > 5 and no f; is 3 by Step 7 (b). When
[W| = 16, it follows that e = f; = 5 or e = f; = 32, When [W| =38, e
must be a power of 7 and so e = f; = 7. When |W| =4, then e = f; is 32
or 3%. Since e = f in all cases, F/Z is a faithful irreducible G/F-module.
Applying Step 7 and Theorem 2.11 to the action of G/F on F/Z, we are
limited to the following possibilities:

4 e=fi K/F|

16 5 3

16 32 5

8 7 3 or 3?

4 33 at most 3% .13
4 3? 5.

By (10.11), [W[*/® < |Syly(@)] < |K/F|-e® This yields a contradiction
except in the following two cases: |W| = 4, e = 32, and |W| =8,e=7.
When e = 7, it follows from Step 3 (e) that G/F < Sp(2,7) and so |K/F| =
3. In both the remaining cases, |K/F| is prime. Since by Step 4, G/K is
elementary abelian and Oy(G/F) = 1, it follows that G/F is a Frobenius

group of order 2|I{/F|. Now G/F acts faithfully and irreducibly on F/Z l

and so |Cp,z(P)| = |F/Z|'/? = e (see Lemma 0.34). Therefore, by (10.11),
[W|e/* < |Syly(G)| < |K/F|- e, which is a contradiction in both casés. The

proof of the theorem is now complete. O

We next delete the hypothesis that O? (G) = G in the above theorem.

10.5 Theorem. Assume that V is a finite faithful and pseudo-primitive
G-module for a solvable group G. Suppose that«p | |G| but pt|G : Cga(v)|
for allv € V (p a fixed prime). Then V is an irreducible G-module and one

of the following occurs:
(1) O”"P(G) is a cyclic p’-group and G < T'(V);
(ii) |V| =32 p=3 and G is isomorphic to SL(2,3) or GL(2,3); or
(iti) |V|=2%p=2=|G: F(G)!, F(G) is extra-special of order 3% and
exponent 3, Z(F(G)) = Z(G) and 0¥ (G) = G.
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Proof. Let H = OP'(G) and K = OP(H). The action of H on V satisfies
the hypotheses of Theorem 10.4; in particular, Vy is irreducible. .Since each _
v € V is centralized by some P, € Syl,(H) and H = KP,, even Vi is
irreducible. If K is cyclic, then G < I'(V) by Theorem 2.1. If secondly
|[V| = 3%, p = 3 and H = SL(2,3), then G = H or G = GL(2,3), as
SL(2,3) has index 2 in GL(2,3).

By Theorem 10.4, we may assume that I = F(H) is non-abelian of order
3% and exponent 3, |H/K| =2 = p, Z(K) = Z(H) and |V| = 2°. In this
case however Example 10.3 (c) shows that G = H. O

Corollary 10.6. Suppose that V is a finite faithful and pseudo-primitive -

G-module for a solvable group G. Assume that m # 0 is a set of prime
divisors of |G|, and that Cg(v) contains a Hall-w-subgroup of G for all
v € V. Then V is an irreducible G-module and one of the following occurs:

(i) G <T(V), G/F(G) is cyclic and F(G) is a n'-group;
(i) |V| = 3%, = = {3} and G is isomorphic to SL(2,3) or GL(2,3);
(iii) |V| = 2%, = = {2}, F(G) is extra-special of order 3* and exponent 3,
|G/F(G)| =2, Z(F(G)) = Z(G) and O% (G) = G.

Proof. Choose some p € m and apply Corollary 10.5. If G < T\(V),
then G/F(G) < T(V)/To(V) is cyclic. Finally, the hypotheses imply that
0,(G) < Cg(V) =1 and so F(G) is a n'-group. a

The presentation of sections 9 and 10 is based on Wolf [Wo 3], Gluck &
Wolf [GW 1] and Manz & Wolf [MW 1].

§11  Arithmetically Large Orbits

Suppose G is a solvable irreducible subgroup of GL(V') where V is a finite -

vector space of order ¢", ¢ a prime power. The intent of this section is to

sliow that G has a large orbit {v®} on V in the sense that [{vC}] is divisible



by many prime divisors of |G|. Of course, exceptions occur. Most notably
if G =TY(V), then the orbit sizes are 1 and ¢" —1 while |G| = n(g" - 1).
Choose H < G such that V = WG for a primitive irreducible H-module

W. If H/Cy(W) £ T(W), then we show there exists v € V with {v G}
divisible by each prime”divisor p of |G| with p > 5. A large part of the
proof is devoted to the case when V = W is primitive. The proof here is
similar to and uses results of Section 10. To pass from the primitive to the
imprimitive case, we use Corollary 5.7 (a) to Gluck’s permutation theorem.

- This corollary states that given a solvable permutation group G on a set Q,
there exists a subset A C Q such that stabg(A) is a {2, 3}-group. Since this
corollary cannot be improved (to delete 2 or 3), this explains, in part, why
we only consider prime divisors p of |G| with p > 5. These small primes

pose other difficulties too.

For H < G, we let mo(G : H) be_the set of those primes p > 5 that divide

|G : H]|. Likewise, we define 74(G). Our first lemma examines small linear

groups as in Section 2.

11.1 Lemma. Suppose that G is a solvable, irreducible subgroup of
GL(n,q), q prime,

(a) If ¢" =21, then mo(G) = @ or G < I(2%)

(b) If g™ = 25 then m(G) = @ or G is isomorphic to a subgroup of
I'(2%)wr Z, or 2%,

)

(c) If ¢" = 28, then my(G) = @ or G is isomorphic to a subgroup of
I'(2%) wr Z3 or T'(2%);

(d) If g™ = 2%, then G is isomorphic to a su"bgroup of Sy wr Fy,
I'(2%) wr Zy or [(219);

(e) If ¢" = 3", then mo(G) C {5); and

(f) If ¢™ = 3%, then |mo(G)| < 2 and G has a normal Sylow p-subgroup
for all p € o(G). )

Proof. /Parts (a), (b) and (d) are immediate from Corollary 2.15,

We first observe that if ¥ < GL(p™, p) is irreducible, quasi-primitive and
solvable (with p prime), then K < T(p?"). Since O,(K) = 1, Corollary 2.5
implies that F(K) is abelian. Then Corollary 2.3 yields that K < T(p?").

(c) If ¢g" = 28, then the last paragraph implies that G < T'(2%), that
G =Sy wrS,, or G < Hwr Z, for a solvable irreducible H < GL(4,2).

Part (¢) now follows from part (a).

(e, f) Suppose now that ¢" is 3* or 3% and that G is not a {2,3}-group.
First assume that G is not quasi-primitive. Then ¢ < H wr S for an
irreducible linear group H and solvable primitive permutation group § <
Sy with m | n. Sincénis4 or 6, m <4. Thus Sisa {2,3}-group and hence
H is not. Thus H is an irreducible subgroup of GL(3,3),n =6 and G < H
wr Zy. Since H is not a {2,3}-group, H is quasi-primitive. By the next to
last paragraph, H < T(3%). Conclusion (f) holds because mo(G) € {13} and
G has a normal Sylow 13-subgroup.

~ We thus assume the corresponding G-module V' is quasi-primitive, |V| =
3% or 3% We apply Corollary 1.10 and adopt its notation. Since we may
assume that G £ T(V), then e := |F : T|'/?2 > 1 by Corollary 2.3. Since
O3(G)=1 and e|n, e is 2 or 4. Let W be an irreducible U-submodule of V.
Then dim(W)|n/e (by Corollary 2.6) and [U]| | [W] - 1.

First suppose that e = 4. Since e[n, we have that n = 4, dim(W) =1 and
|U| = 2= |T|. In this case, A = G and F'/T is faithful G/F-module of order
2. Furthermore, F'/T is an irreducible G/F-module or the direct product
of two irreducible modules of order 22. By (), m¢(G) = mo(G/F) C {5}.

Conclusion (e) holds.

Finally assume that e = 2. Now F/T is a completely reducible A/F-
module of order 2%. Thus m4(A4/T) = mo(4/F) = @. Now dim(W)|n/2 and
so |W] is 3, 32, or 3°. Then |U]| divides 8 or 26..Since A = Cg(Z) and U
is cyclic, mo(G/T) = mo(G/A) = @ and mo(G) = Wo(T)-: mo(U) C{13}.
Furthermore, mo(G) = {13} is possible only when [W| = 3% and n = 6.

ey

] H
RSSO |
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Conclusioﬁs (e) and (f) hold. O

11.2 Proposition. Let G be solvable. Then the number |Syl(G)| of distinct
Sylow subgroups of G (for all primes) is at most |G]|.

Proof. By induction on |G|. We note that equality holds when |G| < 2. ™

We may choose a maximal normal subgroup M of G and set ¢ = |G/M]|,
a prime. By the inductive hypothesis, [Syl(M)] < M. If P € Syl,(G) for
p # q, then P € Syl,(M), and so the number of Sylow subgroups of G for
all primes other than ¢ is at most |M|. But [Syl,(G)| < |G|/q = |M|. Hence
ISYI(G)| < 2[M| < |G]. O

11.3 Theorem. Let V be a finite faithful quasi-primitive G-module for a
solvable group G. Assume that each v € V is centralized by a non-trivial

Sylow p-subgroup of G for some prime p > 5 (dependent on v). Then
G CT(V). : :

Proof. Welet = be the set of prime divisors p> & of |G| for which Cy(P)#0
for P € Syl,(G). The hypotheses imply that each v € V' is centralized by a

Sylow p-subgroup for some p € w. Thus = # @. By Theorem 10.5, we may
assume that [x| > 2.

Let F = F(G). For 1 # Q € Syl(F'), Cv(Q) = {0} by the irreducibil-

ity of V. Thus F is a 7'-group. In particular, 7 C mo(G/F) and lence

[mo(G/F)| 2 2.

Since V' is quasi-primitive, Corollary 1.10 applies and we adopt the no-
tation there. Set e? = |F : T|. By Corollary 2.3, we assume that e > 1.
We set C/F = Cgp(F/T) and observe by Corollary 1.10 (vii) that G' < A
and ANC = F. Thus C/F < Z(G/F).

\

Step 1. .Let D/U € Hall,r(C/U). Then D & G, D/U is abelian, and D/U
is G-isomorphic to a Hall m-subgroup of C/F' Furthermore, U = Cp(2).
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Proof. Let Do/F €Hall,(C/F). Because C/F <Z(G/F), note that Dy IG "
and Dy /F is abelian. Since no p € m divides |F|, Do = FD and FND = U.
Since D centralizes F/T and T/U, we have that Do/U = F/U x D/U
and D/U char Do/U. Thus D < G and D/U = D,/F is abelian. Now
USDNA=DNCNA=DnNF=Uand thus Cp(Z)=ANnD ="T.

Step 2. Let W be an, irreducible U-submodule of V. Then
(a) |V| = |W]|' for an integer t;
(b)) Ul | W] -1

Proof. By hypothesis, |V| is finite. Part (a) is just Corollary 2.6. Part (b)

is immediate because Vy; is homogeneous and U is cyclic.

Step 3. Let p € m and P € Syl,(G). Then
(a) [Cv(P)] < V7%
(b) If 1 # P, < PN D, then |Cy(P1)| < [V|Y/5 and p | t - dim(W).

Proof. Let 1 # Py, < P with |Py| = p. Recall that p { |F|. First suppose
that p l |D| and assume without loss of generality that Py < D. Since
U = Cp(U) by Step 1 and p { |U|, we may choose 1 # Y < Z with Y Py
a Frobenius group. Note Cy(Y) = 0 because ¥ < G. Then dim(V) =
p- dim(Cy(P)) by Lemma 0.34. Since dim(V‘) = tedim(W) and p1{ |F|, in

fact p|t - dim(W). Parts (a) and (b) follow when p | |D|.

Choose'Q € Syl,(F) such that Py £ Cg(Q). Apply Lemma 7.2 or Lemma
0.34 to conclude |Cy(P)| < |V|'/? (recall p > 5). This step follows.

Step 4.

(2) > > lcu(P)=V];

pE™ PeSyl, (G)

(b) |G > ) ISyl (G)] > [V]'/% and
pEn
(c) Some p € 7 does not divide |D|. In particular, |G/C]| is divisible by
p. )
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Proof. (a, b) Since each v € V' is centralized by some Sylow p—Slegroul) for

some p € , UpEﬂ’ UPesyl,,(G) Cy(P)=V. Thus }_ ¢, ZPESylP(G) ICv(P)|
> |V|. Applying Step 3 (a) and Proposition 11.2,

V<> > VP2 < S IsyL (@ VI < |Gl IV,

pET PESyl,(G) peE™T

We have proven (a) and (b).

(¢) Assume each p € m divides |D|. Since D G, the intersection of D
with a Sylow subgroup of G is a Sylow subgroup of D. Thus each v € V
is centralized by a non-trivial Sylow p-subgroup of D for some p € 7. As
above, [V] € Tyen Spesys, o [CvP). By Step 3 (b), [Cv(P)] < V]/°
* for P € Syl(D), p € m. Hence 3 ¢, [Syl,(D)| > [V[{/°. For p € m,
[Syl,(D)| < |U] because D/U is abelian. By Step 1, D/U acts faithfully on

the cyclic grox’tp Z < U and hence

| < log,(ID/U1) < loga(IUD)-

Thus
Ve < SISyl (D)) < | U] < log,(IUD (U]
pEm
By Step 2, _
V=W > |W[z[U|"
Thus

U105 < U] logy (V1) < [U[* and e < 3.

Since e > 1, e = 2 and |U|?/5 <log, |U|. Then |U| < 2, a contradiction. So

some p € m does not divide |D|.

Step 5.
(a) e!® > 4|t
(b) e < 32.

(c) No prime larger than 3 divides e.
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Proof. By Corollary 3.7, |G| < @13/21U|2/2_ By Steps 4 (b) and 2 (b),

(W (2! /2 )2 > U232 /2 > |G| > |V|'/2 = W[/

-and

e!d > 4wt > 4|we . ‘ (11.1)

Since |W| > 3, (11:1) yields e < 64. If |[IW|is 3, 4 or 5, then |U| and hence
e are both powers of 2 or both are powers of 3. In this case, e < 32. If,

however, [W| > 7, then (11.1) implies that e < 32. This proves (a) and (b).

~ We now assume that s|e for a prime s > 5. First suppose that s > 7. Then
[W|> 23 and (11.1) implies that e < 17, whence e = 11 or 13. Suppose that
e =11. By (11.1), [W]is 23 or 67. Since Z <.U and |U| | [W| -1, |Z] | 66.
But C/F < Aut(Z) and so C/F is a {2,5}-group. Now G/C < GL(2,11)
and so G/C is a {2,3,5,11}-group. ‘Every prime in 7 divides |G/C/| or
|C/F| and is at least 5. But no prime in 7 divides |F| or ¢, in particular.
Thus m € {5}, a contradiction because |7| > 2 (see the first paragraph of
the theorem’s proof). So e # 11. Should e = 13, then |W| = 27 and we

similarly derive the contradiction = C {7}. Hence s < 7.

Next consider s = 7. Should |W] > 29, then (11.1) implies e < 14, whence
e =7. If [W| < 29 then |W| = 8 and part (b) implies that e = 7. Then
G/C < GL(2,7)is a {2,3,7}-group. Since 7]e, no prime in 7 divides |G/C|,
contradicting Step 4 (c). Hence s must be 5 and |[W| > 11. Now (11.1)
implies that e < 20. Now F/T = Hle (F;/T) is a completely reducible
and faithful G/C-module with each |F;/T| =: e? (see Corollary 1.10). Thus
e=c¢€y;---epis 5,52, or 5-3. Since GL(2,r) is a {2,3,5}-group whenever
r’ﬂe {2,3,5}, G/C is a {2,3,5}-group. Since 5le, we have that G/C is a

m’/-group, again contradicting Step 4 (c). This step is complete.

Step 6. Writing e = e; - -+ e¢ as in the last paragraph, we may assume that

ey 2 23, Furthermore, if e; = 2% then e; = 2% and e = 23 . 22,

Proof. Now F/T = F\/T x --- x Fy¢/T where each F;/T is an irreducible
G/C-module of order e?. Set C; = Cg(F:/T) so that C = N¢_,C;. We have

IS R BN
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by Step 4 (c) that at least one prime p € 7 divides |G/C|. We may assume
that p i |G/Cy|. Thus e; is not 2 or 3. Since e < 32 and e is divisible by no

primes larger than 3 (see Step 5 (b, ¢)), we may assume for this step that
ey is 2% or 23,

First suppose that e; is 2? and every e; < 4. By Lemma 11.1 (a), each
G/C;is a {2,3,5}-group with a normal (possibly trivial) Sylow 5-subgroup.
Since (JC; = C and C/F < Z(G/F), it follows that G/C is a {2,3,5}-
group and G/F has a normal Sylow 5-subgroup. Each ¢ > 5 in 7 must
divide |C/F| and hence |D/U|. Also for ¢ > 5 in 7 and Q € Syly(D), we
have 1 # Q € Syl (G). Let P € Syls(G). Each v € V is centralized by some
conjugate of P or by a Sylow g-subgroup of D with ¢ > 5, ¢ € . Thus

SYL(G)ICv(P)+ > > ICu(@] = VI
5<g€m QESyl, (D)

Since FP < G, |Syls(G)| < |F/T||U| = e*|U|. Applying Step 3, Proposition
2 and Step 1, :

ST 1Cu@I S IDHVVE < UV

5<q€m QeSyl, (D)
Now |Cy(P)] € [V]'2 by Step 3 and |U] < [W| by Step 2. Thus
V] WV + WPy e.

Now |V[3/10 > |W[¢/10 > [W]'2/10 > |W| and so |W||V|Y/2 > |W|?|V|!/5.
Hence 2¢?|W||V|*/2> |V|. Since |V] > |W]°, we have 4e* > [W|*~2. Since
e > 4, [W| < 32. Since Z is cyclic and |Z| \ [W| -1, Aut(Z) and D/U
are easily checked to be {2,3,5}-groups. Hence 5 is the only prime in 7, a

contradiction. Hence e; is not 22.

For this step, we next assume that e; = 2%, Since e < 32, we may assume
that e; <3 for7 > 1 and so G/C;is a {2,3}-group (¢ > 1). Since p | |G/C],
it follows from Lemma 11.1 (b) that p = 7 is the unique p € = dividing
|G/Cy| and that G/C; has a normal Sylow 7-subgroup. As above G/C

and G/F have normal Sylow 7-subgroups. As in the previous paragraph
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4e* > |W]°~2. Since ¢ > 8, [W| < 6. Then Aut(Z) and D/U are {2,3}-

groups and || = 1, a contradiction. This step is complete.
Step7. D =U.

Proof. By Step 5, we have that
e3> Wit .4 (11.2)

Ift > 5, then e!® > |[W[>**.4 > 4.3%"* and e < 4, contradicting Step
6. Sot < 5. We may assume that D > U and choose ¢ a prime dividing
|D/U|. By Step 3, ¢| dim(W) and note ¢ > 5.

Because ¢ > 8, (11.2) implies that |[W| < 237/4 < 620. Since ¢ > 5
divides dim(W), we must have that |W| is 2%, 27 or 3°. In the first two
cases, |W|—1is a prime and so |U| is 31 or 127, whence 31 or 127 divides e,
contradicting Step 5 (b, ¢). Thus |W| = 3°. By (11.2), e < 16. Since each
prime divisor of e divides |W|—1, e is a power of 2 by Step 5 (c). Applying
Step 6, we get e = 2% . 2% a contradiction. " Thus D = U. '

Step 8. e = e; = 25.

Proof. First we show e, # 32. If e; = 3%, observe that e;i <3for¢>1(Step
5 (b)). Then G/C; and G/C are {2,3,5}-groups by Lemma 11.1. Since
D =U, = C {5}, a contradiction. Thus e; # 3%

By Steps 5 (b) and 6, we have that e = e;---¢e, is 2% - 2%, 2%, 21 .2
3% or 2%. For now, exclude the last case. By Lemma 11.1 and Step 7,
[r] < 2 and each Sylow p-subgroup of G/C for p € 7 is normal in G/C.
Since C/F < Z(G/F), FP/F Q4 G/F whenever P € Syl,(G), p € 7. Since
e > 16, [W| < 23 by Step 5. Because |U| | [W| =1 and [T/U| < 2, Aut(U)
is a {2,3}-group and P < Cg(T). Thus |Syl,(G)| < |F/T| = €*. Hence, by
Steps 4 and 2,

32 W2 < VIV <3 ISy1L(G)] < e < 26,
pET h
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Since e > 16, this is a contradiction, completing this step.

Step 9. Conclusion.

Proof. We have that e = ¢; = 2% and chlar(W) # 2. By Step 5, |W| = 3.
Thus U =T has order 2 and A = G. Furthermore r C 7o(G/ F) has at least
2 elements. Since F'/U is an irreducible faithful G/F-module, = C {11, 31,5}
by Lemma 11.1. In fact, G/F < T'(25) wr Z, or G/F < T(2'0). Observe
that G/F has normal Sylow p-subgroups for p = 11 and 31, and |G/F]|
divides 31%-5%-2 or 33-31-5-2. Since U < Z(G),

lSyh](G)] < 210, |Syldl(G)| < 210,

and

|Syls(G)] < 2%
By Steps 4 and 2,

316 < |I/V|E/2 < iv|l/2 < leylp(G)l < 910 T 910 + 921 < 922

pem

This contradiction completes the proof of the theorem. O

One should note again that in the action of GL(2,3) on its natural module
W, each w € W is centralized by a Sylow 3-subgroup, but GL(2,3) £ I'(3?).

We next proceedAto imprimitive modules. If V is an irreducible, faithful
G-module, then V = W€ for a primitive module W of a subgroup H < G.
If H/Cu(W) %_ W) (we assume V finite and G solvable), we show that
there exists some v € V with mo(G : Cg(v)) = mo(G). This uses the above
Theorem 11.3 together with Corollary 5.7 of Gluck’s permutation theorem

5.6.

11.4 Theorem. Suppose that V is a finite faithful irreducible G-module
and that V = WY for an (irreducible) primitive module W of H for some
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H < .G (possibly H = G). Assume that H/Cy(W) € T'(W), but G is

solvable. Then there exists v € V such that mo(G : Cg(v)) = mo(G).

Proof. Since V = WY we may write V = X 1®---@®Xm for subspaces X; of
V that are transitively permuted by G with W = X;. For H < J < G, W7/ is
irreducible and hence H = Ng(W) = Ng(X,). Since H/C (W) £ T(W),
Theorem 11.3 implies there exists 0 # a1 € W such that

mo(H[Cy(a1)) = mo(H/Cr(W)).

Let H; = Ng(X;), a conjugate of H. But the H;/Cpy, (X;) are isomorphic
as linear groups and so there exist, by Theorem 11.3, 0 # z; € X; such that

wo(H;/C ot} (23)) = mol Hy /i (X;)) = mo(H/Cpy(1¥))
for each j.

Next let C = (ir, Hi = ()., stab g(X), so that G/C faithfully and
transitively permutes ’{Xl,...;X,n}. By Corollary 5.7, we may now as-
sume without any loss of generality that there exists 1 < £ < m such that
stabg/e{X1,..., X} is a {2,8}-group, Let 2 = 21 + --- + 2 and suppose
that @@ € Sylg(G) for a prime ¢ > 5 and @ < Cg(z). Then @ must
stabilize {X1,...,X¢} and hence @ < C = ﬂ:’; H;. Now () must cen-
tralize x1, z2,...,2¢. Since ¢ { |H; : Cp,(z;)|, the first paragraph implies
that ¢ { |H;/Cpy,(Xi)| for ¢ = 1,...,£ Since C/C¢(Xi) = C/Cc(X;) for
j=1,...,¢...,mand (2, Cc(X;) =1, C is a ¢'-group. Since @ < C,
@ = 1. Hence mo(G) = mo(G : Cg(x)). O

11.5 Corollary. Suppose V is a faithful finite module for a solvable group
G. Suppose V = V1 & --- @V, for irreducible G-mé)dules Vi (we allow V
to have “mixed charémcteristic”). For each 1, write V; = WE for a primitive
module W; of a subgroup H; < G. Assume H;/Cpy,(W;) is not isomorphic
to a subgroup of T'(W;) for all . Then there exists v € V such that

mo(G : Calv)) = mo( ).




-
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Proof. Applying Theorem 11.4, there exists, for each i, v; € V; such that
m(G : Ca(vi)) = mo(G/Cq(Vi)). Set v = vy +---+v,. fp >3 and
Pe Syl,;(G) centralizes v, then P centralizes each v; and so P < Cg(V;) for
all ¢. This implies P =1 and p{|G|. So mo(G : Cg(v)) = mo(G). O

Chapter IV
PRIME POWER DIVISORS OF CHARACTER DEGREES

§12  Characters of p'-degree and Brauer’s

Height-Zero Conjecture

Suppose N 4 G, 0 € Irr(G), and x(1)/6(1) is a p’-number for all irre-
ducible constituents y of 8¢. The bulk of work in this section will be aimed
at proving that G/N has an abelian Sylow p-subgroup, provided G/N is
solvable. With little extra work, we see that p can be replaced by a set of
primes. As a consequence of this and Fong reduction (Lemma 0.25 and The-
orem (.28), we then prove Brauer’s height-zero conjecture for solvable G.
Namely, if B is a p-block of a solvable group, then all the ordinary characters
in B have height zero if and only if the defect group for B is abelian. The
contents of this section are [Wo 3, GW 1], and while the arguments are es-
sentially the same, some improvements and refinements should improve the
reading thereof. Brauer’s height-zero conjecture was extended to p-solvable

G in [GW 2], with the help of the classification of simple groups.

In the key Theorem 12.9 of this section, we have N < G, 8 € Irr (V) and
x(1)/6(1) a p'-number for all x € Irr(G|6). The aim is to show that G/N
has abelian Sylow. p-subgroup, at least when G//N is solvable. In a minimal
counterexamiple, there exists an abelian chief factor M/N -of G such that
each A\ € Irr (M/N) is invariant under some Sylow p-subgroup of G/M.

Consequently, the results of Sections 9 and 10 play an important role.

12.1 Proposition. Suppose that H acts on an abelian group A. Then

(a) H acts faithfully on A if and only if H acts faithfully on Irr (4).

(b) H acts irreducibly on A if and only if H acts irreducibly on Irr (A).
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Proof. Note that the actions of H on A and A* = Iir (4) satisfy A*(a®) =
Ma) for e € A, h € H, and X € A*. Likewise H acts on A™ and pEAM) =
b(\) for b € A**, A € A*. There is a natural isomorphism from A to A**
given by a — a** where a**(\) = A(a) (see [Hu, V, 6.4]). Now

(@) (A1) = A(a) = Ma) = ™ () = (") (AY)

for a € A, h € H, A € A*. This natural isomorphism is hence an H-

isomorphism. Thus H acts faithfully (irreducibly) on A if and only if H -

acts faithfully (irreducibly, resp.) on A**.

If h € H centralizes a group B, h acts tiivially on Irr (B). Thus
Cu(A) £ Cu(A*) < Cu(A™) = Cp(A).

This proves (a). If 1 < D < A is H-invariant then 1 < (4/D)* < A" is
H-invariant. Applying this twice,

A** irreducible == A* irreducible = A irreducible =— A** i1‘redtxcible.

This proves (b). O

Alternatively, to prove 12.1 (a), one can use Brauer’s permutation lemma

[Is, 6.32]. We employ this in the next lemma, which is related to Proposition

12.1 (a).

12.2 Lemma. Assume that S acts on G with (|S],|G|) = 1. If S fixes every

1'rredizcibIe character of G, then S centralizes G.

Proof. With no loss of generality, we may assume that S # 1 is a cyclic
p-group for some prime p. Since S is cyclic, Brauer’s permutation lemma
[Is, 6.32] implies that S fixes each conjugacy class Cof G. Since pt|C| and S
is a p-group, C N Cg(S) # @. Since this is valid for each conjugacy class of
G, we have that G = UgEG Cg(S)?. Since @ is finite, G = Cg(5). O

4
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12.3 Proposition. Let N 4 G, 6 € Irr (N) and x € Irr (G|6). The follow-

ing are equivalent:
(i) xn = ef with e* = |G : N|;
(ii) I(0) = G and x vanishes off N; and

(ii) I(#) = G and x is the unique irreducible constituent of 6C.

Proof. This is Exercise 6.3 of {Is]. O

In Proposition 12.3 above, we say that x and 0 are fully ramified with
respect to G/N. Before proceeding with the main result of this section, we

need some information on fully ramified sections.

12.4 Lemma. Suppose that G/N is abelian, ¢ € Irr (N), and x € Irr (Glp)
is fully ramified with respect to G/N. Suppose that S acts on G fixing N,
¢, and (hence) x. Assume that (|S|,|G/N|) = 1. Set C/N = Cg/n(S) and
D/N =[G/N,S]. Then

(a) x is fully ramified with respect to both G/C and G/D; and
(b) ¢ is fully ramified with respect to both C/N and D/N.

Proof. Since G/N is abelian, C' 4 G. Because x is the unique irreducible
constituent of %, the irreducible constituents of € and y¢ coincide. By
Lemma 0.17 (b, f), xc¢ has a unique irreducible S-invariant constituent,
whereas every irreducible constituent of ¢ is S-invariant. Thus ¢ has a
unique irreducible constituent § and Ig(8) = G = Ig(¢). By Proposition
12.3, x and ¢ are fully ramified with respect to G/C and C/N (respectively).
A similar argument shows that x and ¢ are fully ramified with respect to
G/D and D/N (respectively). O

12.5 Lemma. Suppose that N 4 G with G/N abelian. Assume that
@ € Irr (N) 1s fully ramified with respect to G/N. Then

(a) G/N = A x A for an abelian group A; and
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(b) If G/N is a p-group, if Q) is a g-group acting on G fixing N and ¢,
if ¢ # p and Q/Cq(G/N) is abelian, then rank (Q/Cq(G/N)) <
rank (G/N)/2.

Proof. (a) = (). By induction on [Q/Qol|, where Qo = Cq(G/N). By
(a), we may assume that rank (G/N) > 2 and thus we may assume that

Q/Qy is not cyclic. We may choose Q¢ < @y < @ such that

rank (Q/Qq) = rank (Q/Q1) + rank (Q1/Qo)-
By Fitting’s Lemma 0.6, G/N = C/N x D/N where C/N = Cg/n(Q1)
and D/N =[G/N,Q;]. Now Q/Q; acts faithfully on C/N and Q1/Q, acts
faithfully on D/N. Applying Lemma 12.4 and the inductive hypothesis,
rank (Q/Qo) = rank (Q/Q;) + rank (Q1/Qo)
< .rank (C/N)/2 + rank (D/N)/2 = rank (G/N)/2.
Hence (a) implies (b).

We next prove (a) by induction on |G/N|. By [Is, Theorem 11.28], we may
assume that ¢ is linear and faithful. Since ¢ is also G-invariant, N < Z(G).

If x is the unique irreducible constituent of ¢, then x vanishes off N by

Proposition 12.4 and so N = Z(@). Note that N is cyclic and G' < N.

Choose z € G such that o(Nz) is maximal. Set D = (N,z) and C =
Cq(D) = Cg(z) > D. Then G/C acts faithfully on D, while centralizing
both D/N and N. By Lemma 1.5 and its proof, we have that |G/C| | |D/N|
and G/C < Hom (D/N,N). Since D/N and N are cyclic, G/C is also cyclic.
Let A € Irr (D]p) and v € Irr (C|A). Note x € Irr (G|y). Since D is abelian
énd centralized by C, it follows that A is linear and yp = v(1)X. By [Is,
Lemma 2.29], v(1) < |C : D|'/2. Thus; as |G/C| | |D/N],

‘ G/NTH* = x(1) = (/431
<|G:cl|Cc: D|'?
<(I6/clIp/N) /DI
|G/,
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Hence |G/C| = |D/N|. Wé may choose y € G with G’/C = (Cy) and
o(Cy) = o(Nz). By choice of z, it follows that o(Ny) = o(Nz) and G/N =
C/N @ (Ny). Also (N:c,Ny) = (Nz) @ (Ny). If y centralizes z* (i € Z)
then C(z') D (C,y) = G and 2* € Z(G) = N. Setting U = (N,z;y), it
easily follows that N = Z(U). . '

Let V = Cg{U) so that G/N = U/N x V/N by Corollary 1.7. Let
n € Irr (V|p).” Then x € Irr (Gln) and Ig(n) = G because U < Cg(V).
Since y vanishes oﬁ N and 7 is the unique irreducible constituent of x, we
see that n vanishes on V' \ N. Certainly ¢ is V-invariant and so Proposition
12.3 implies that ¢ is fully ramified with respect to V/N. By the inductive
hypothesis, V/N = B @ B for an abelian group B. Now G/N = A& A
for an abelian group A, because G/N = V/N & (Na) @ (Ny) and o( Nz) =,
o(Ny). O

If x € Irr (@) and yn € Irr (N) with N < G, then Gallagher’s Theorem
0.9 tells us f + Bx is a bijection from Irr (G/N) onto Irr (Glxn). Lemma
0.10 strengthens this. Propositions 0.11 and 0.12 and Theorem 0.13 give suf-
ficient conditions for a G-invariant ¢ € Irr (V) to extend to G. These results-

will be used repeatedly throughout Section 12, eften without reference.

.12.6 Lemma. Suppose that G/N is abelian and ¢ € Irr (N) is G-invariant.
Then there exists a unique N < M < G such that every v € Irr (M]yp)
extends y and is fully ramified with respect to G/M.

Proof. We first show uniqueness. If I{ also satisfies the conclusion, then
cach y € Irr(G|p) vanishes off M N K. But xp = f -~ for an integer f
and extension v of ¢. Thus v vanishes off M N K, yet yprnyc is irreducible.

Thus M < K and by symmetry M = I{. This establishes uniqueness.

We now choose M < G maximal such that ¢ has a G-invariant extension
o € Irr(M). Since Irr (M|p) = {)o | A € Irr (M/N)} and since G/N is
abelian, every v € Irr (M|p) is a G-invariant extension of ¢. Thus we neéd

just show that o is fully ramified with respect to G/M. Let y € Irr (G|o)



and let M < U < G with U/M cyclic. By Proposition 12.3, it suffices to
show that x vanishes on U \ M.

Let B € Irr (Ulo) with [xu, 0] # 0. Since U/M is cyclic, f extends o.
For g € G, B = a,f for a unique oy € Irr (U/M). Since G/M is abelian,
agn = ayap for g, h € G. Thus there is a subgroup A < Irr (U/M) such
that {af l a € Irr (A)} is the set of G-conjugates of 8. By [Hu, V, 6.4],
A = Irr (U/K) for some sub'group K with M < K < U. Now fy is G-
invariant and hence I = M by the choice of M. Set p = Zz\elrr(U/l\/I) A
(the regular character of U/M), so that yy = fpf for an integer f. Since p
vanishes off the identity (see [Is, Lemma 2.10]), x vanishes on U\ N. o

12.7 Proposition. Assume that G/N = Qg and X € Irr (N) is G-invariant.
Then A extends to G.

Proof. By [Is, Theorem 11.28], we may assume that A is linear and faithful,
whence N < Z(G). Set Z/N = Z(G/N). Forz € G\ Z, 2% € Z \ N, and
Z < Cg(z). Thus Z = Z(G). Pick y € G with [z,y] # 1. By usual
commutator identities, 1 = [z,y?] = [z,y][z,y]? = [z,y]?. But [z,y] ¢ N
and so Z splits over N. Note [z,y] = [nz,my] for n, m € N and so Z =
N x U where U = ([z,y]) = G’ has order 2. Thus X extends to A\* € Irr (2)
with U < ker A*. Now A* extends to G because G/U is abelian. O

In some ways, our main Theorem 12.9 generalizes the following result of

Tto.

12.8 Lemma. If G is p-solvable and p { x(1) for all x € Irr(G), then G has

a pormal abelian Sylow-p-subgroup.

Proof. This is immediate from (Is, Theorem 12.33]. We also give a proof

of this and more in Theorem 13.1."° ]

12.9 Theorem. Suppose that N 4G, 6 € Iee (V) and xiljjv(l) is a n'-
number for all x € Irr(G|6) and a set m of primes. Assume that G/N is
solvable. Then G/N has an abelian Hall w-subgroup. In particular, G/N

has m-length at most one.

Proof. By induction on |G/N|. The hypotheses imply that |G : I(8)| is
7' and so Ig(8)/N contains a Hall w-subgroup of G/N. We may assume

that G = I(8).

Let M/N = OL(G/N). If ¢ € Irr(M|§), then (1)/6(1) € =’ -and
w(1)/6(1) ‘ |M/N|. Thus each ¢ € Irr(M|0) extends 6. In particular,
if X\ € Irr (M/N), then Ap € Irr (M[6) and Ap extends 6. Thus A is linear
and M /N is abelian.

Suppose that N < Ny < G and 6, € Irr(N|8). Then 6;(1)/6(1) is
7' and x(1)/6:(1) is 7' for all x € Irr (G16;). The inductive hypothesis
impliés that G/N; and N;/N have abclian Hall w-subgroups. In particular,
we may assume that O™ (G/N) = G/N and O, (G/N) = 1. Since M/N =
0.(G/N) is abelian and O (G/N) = 1, we have that M /N = Cg/n(M/N)
by Lemma 0.19.

We may assume M < G and choose a maximal normal subgroup I{ of
G with M < K. Since O™ (G/N) = G/N and M/N = O,(G/N), we have
that |G/LK| = p for a prime p € 7 and that M < I. Since I{/N has an
abelian Hall m-subgroup and M/N = Cg/n(M/N), /M is a n'-group and
(G/M) = K/M.

We claim that M/N is a chief factor of G. If not, then whenever N <
J < M with J 4 G, G/J has an abelian Hall n-subgroup. Thus M/J <
Z(O™(G/J)) = Z(G/J). In particular, K/M centralizes M/J whenever
M|/ J is a chief factor of G with N < J. Since |M/N|is m and |K/M|is 7',
this implies M/N < Z(I/N), a contradiction since M/N = Cg/n(M/N)
‘and M < K. Thus M/N = Cg/ny(M/N) is a chief factor of G and a faithful
irreducible G/M-module. Since K/M = (G/M)', in fact K/N = (G/N)".

—

=

B ig

—_—



ir—‘ N
14

—

164 " +BRAUER’S HEIGIIT-ZERO CONJECTURE Sec. 12

We have now established:

Step 1. (a) M/N is an elementary abelian g-group for a prime ¢ € 7.
(b) M/N is a faithful irreducible G/M-module.
(c) /M is a non-trivial n'-group.
(d) K/N = (G/N)' is the unique maximal normal subgroup of G/N.
(e) |G/ K| = p for a prime p € 7. \ ‘

Step 2. There is a G-invariant extension 6* € Irr (M) of 6.

Proof. Since (|K/M|,|M/N|) =1 and Ix(0) = K, Lemma 0.17 (d) yields
the existence of a K-invariant 6* € Irr (M|0). Since 6*(1)/6(1) is a ='-
number, and M/N is a w-group, 6* extends §. The hypotheses imply that
Ic(8*) contains a Hall w-subgroup of G. But K <Ix(6*) and |G/K|=p€m.

Thus 8* is G-invariant.

Step 3. Let V = Irr (M/N). Then V is a faithful irreducible G/M-module.
Furthermore cach A € V is centralized by a Sylow p-subgroup of G/M.

Proof. By Step 1 (b) and Proposition 12.1, V is a faithful irreducible
G/M-module. Now X +— A\0* defines a bijection from V' onto Irr (M]|6).
In particular, Ig(A0*) = Ig()) for all A-€ V. The hypotheses imply that
pt|G: Ig(A\0*)| and hence pt |G : Ig(N)] for all A€ V.

Step 4. (a) V is not a quasi-primitive G/M-module.
(b)If M < A< K with A 4G and K/A a cyclic t-group for some prime t,
then ¢ l |A/M|.

Proof. First we prove (b). Assume that ¢ { |[A/M]|. Also p t |A/M]|. By

Proposition 0.17 (d), there exists u € Iir (4|6*) that is G-invariant. .Each

Sylow subgroup of G/M is cyclic, and so there exists p* € Irr (G|p) extend-

ing p.- Then op* € Irr (G|6*) for all o € Irr (G/A). Thus p { o(1) for all

o € Irr (G/A). By Ito’s Theorem 12.8, G/A has a normal Sylow p-subgroup,
ke At ae (/AN — T0/A £ 1 This nraves (h).
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Now (G/M) = K/M. If V is quasi-primitive, then Theorem 10.4 implies
that /M is cyclic.or that K/M 2 Qg and |G/K| = 3. By (b), K/M #1
is not cyclic. Now, by Proposition 12.7, 8* extends to I{ and hence to G.
Again this implies that each o € Irr(G/M) has 3'-degree, contradicting
Lemma 12.8. This proves (a).

We have that the action of G/M on V satisfies the hypotheses of Theorem
9.3 (proof below). We lift the notation of that theorem to G//M.

Step 5. We have normal subgroups M < C < L < K < G such that

(i) Ve = Vi @ --- @ V,, for homogeneous components Vi of Ve, with
Vil = ¢ (¢ prime as in Step 1).
(ii) G/C = D, Dy, or AT(2%), p = 2,2, or 3 (respectively), n = 3,5,
or 8 (resp.), and G/C faithfully and primitively permutes the V;.

(iii) L/C is the unique minimal normal subgroup of G/C, |L/C| = n,
and L/C transitively permutes the V;.

(iv) C/Cc(V;) transitively permutes Vi#, for each 1.

(v) ¢™ # 3% nor 3%,

Proof. Choose M < C < G maximal such that V¢ is not homogeneous
by Step 4 (a). Since (K/M) = (G/M)' has index p in G/M, we see that
M<C<K<Gandp||G/C|. Writing Vo = Vi @+ @ V, for homoge-
neous components V; of Vo and n > 1, Proposition 0.2 (i) applies and G/C
faithfully and primitively permutes {V;,...,V,}. By Step 3, each A € V
is centralized by a Sylow p-subgroup. Theorem 9.3 applies to the action of
G/M on V. Conclusions (i), (ii), (iii) and (iv) follow from Theorem 9.3.
Note that I = L when p = 2, and that |{/L| = 7 when p = 3.

Suppose that q¢™ =3%or 3*. By Lemma 9.2, ¢ = 3 and so G/C = A'(2°).
Since 7 |GL(m,3)], we have that 71|C/Cc(Vi)]. Since Ce(Vi) = M, it
follows that 7 does not divide |C'/M| or |L/M]|. This contradicts Step 4 (b),

as G/L is a Frobenmius groun of order 21. This contradiction nroves (¥}



Step 6. Set C; = Co(Vy), Fi/Ci = F(C/C;) and F = (\_, Fi. Then
(i) NCi= M.

(ii) C/F; and F;/C; are cyclic. )

(i) F/M = F(C/M). Also F/M and C/F are abelian of rank
at most n. .

(iv) There exists a prime r | |[F/M| and R € Sylr(F/]\\/.f) such that
r{|C/F|and F/M = Cg p(R/M).

(v) If C > F, then F = Cg(R/M) and r{|L/F|.

Proof. Part (1) is immediate because V is a faithful G/M and C'/M-module.
Since ¢™ # 3% or 3* (Step 5 (v)), parts (ii), (iii) and (iv) follow from
Corollary 9.7 and Lemma 9.8 (in case ¢™ = 2%, 2 € m and |C/M]| must
be odd).

For (v), we assume that C > F. By Lemma 9.10 (b), Cg(C/F) = C. By
(iv), F = Co(R/M) and so Ce(R/M)NC = F. Thus Cg(R/M) centralizes
C/F and so Cg(R/M) < C,ie. Cg(R/M) < Cc(R/M) = F. So we need
just prove r 1 |L/F|.

But we know r{ |C/F|. Furthermore |L/C| is 3, 5, or 2* and p = 2,2, or
3 (respectively). Without loss of generality,  is 3, 5, or 2 (resp.). Since r is
a Zsigmondy prime divisor of ¢™ — 1, we must have that m is 1, 2, or 4 (not
necessarily respectively). But exp(C/F)lm by Lemma 9.8 (b) and C/F # 1.
Hence m is 2 or 4 and C/F is a 2-group. Since m > 1, the Zsigmondy prime

ris 3 or § and thus p = 2. This is a contradiction as C/F is a 7'-group.

Step 7. If M < T < F with T 9 G and Cgn(T/M) £ C/M, then T/M is
. cyclic and T/M < Z(K/M).

Proof. That T/M is cyclic follows from Step 5 (v) and Corollary 9.9. Since
K/M = (G/M)', T/M < Z(K/M).

Step 8. Suppose that M <T < F with T 9 G and T/M an s-group for a

prime s, s { |[L/F|. Assume there is a G-invariant extension § € Irr (T) of

0*. Then s =7 = |K/L|,p=3,T/M <Z(G/M) and T/M is cyclic.

Proof. Now a +— «f defines a bijection from Irr (T'/M) onto Irr(T|6*).
Since § is G-invariant, Ig(«) = Ig(ad) for each a € Irr(T/M). Thus the

hypotheses of the theorem imply that p{|G : Ig(a)| for all a € Irr (T/M). -

First suppose that T/M < Z(L/M). By Step 7, T/M is cyclic and central
in I{/M. Sincept |G : Ig(a)|for all a € Irr (T/M), we see that G /I acts on
T/M fixing all « € Irr (T/M). Thus T/M < Z(G/M). Let T/M < S/M €
Syl,(F/M). Because s t{ |L/F|, Fitting’s Lemma 0.6 implies that S/M =
Sy/M X UJM where U/M = [S,L] M/M and S\ /M = Cg/p(L/F) > T/M.
By Step 7, S1/M = S/U is cyclic. Now 1 # T/M < Z(G/M). 1f s {|G/S],
then S;/M < Z(G/]Vf) and S/U < Z(G/U). Also O*(G/M) < G/M,
contradicting Step 1 (d). Hence s | |G/F|, but s { |L/F|. So s | |G/K]|.
Because p 1 |I{/M]|, certainly p # s and so s | |K/L|. Since I = L when

= 2, the only 1)0351b111ty Isp=3and s =7=|K/L|. The conclusion of
this step is satisfied when T/M <Z(L/M).

It suffices to show that T/M < Z(L/M). Assume not. Since we have
(|L/F|,|T/M|) = 1, we may find a chief factor Ty/M of G with To/M £
Z(L/M). Since ¢ restricted to Ty is a G-invariant extension of §*, we may
assume without loss of generality that T' = Ty, i.e. T/M is a chief factor
of G. Let B = Cg(T/M). Since B does not contain L, we have that
K/M = (C'/M ¢ B/M and T/M is not cyclic. By Step 7, it follows that
F<B<LC.

Let X = Irr (T/M). Then X is an irreducible faithful G/B-module by
Proposition 12.1. As in the first 1Jdri1gra1)l1 of this step, each x € X is
centralized by a Sylow p-subgroup of G/B. If p = 2, then s = 2 by Lemma
9.2, contradicting Step 1 as p § |[K/M|. Thus p = 3, n = 8, and G/C =
AD(2%). Then G/C and G/B are not metacyclic, whence Theorem 10.4
implies X is not a quasi-primitive G/B-module. Since O” (G/B) = G/B,

/
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Theorem 9.3 and Step 6 yield that

rank (X) = dim(X) > 8 > n > rank (S/M) > rank (T/M):
Hence rank (X) =8 =rank(T/M) and |T/M| = s8. |

Let T; = Cp(Vi) = T NC;. Since T/T; < Fi/Cj, it follows from Step 6
that T'/T; is cyclic and acts fixed-point-freely on V;. Since rank (T/M) =8,

we have that
8

T>Ti>TiNTy>--> (| Ti=M (12.1)
i=1

is a properly descending chain with each factor group cyclic of order s.

Now V =Vi&®- - -@Vs and we choose §€V with §=(61,...,85,1,1,1) with
61,...,05 non-principal. Now 3 { |G : I5(6)| by Step 3 and CI5(6)/C must
stabilize {V,...,Vs}. Thus I5(8)/Ic(8) =2 CIG(8)/C has order 3. Since
s 4 |C/S| and s # p = 3, we have [Ig(8)/Is(6)| is not divisible by s. By
Lemma 0.17 (d), there exists §* € Irr(Is(8)|6) that is invariant in Ig(6).
Now § € V = Irr (M/N) and s { [M/N|. Thus § extends to Is(6). Since
Is(6)/M < S/M is abelian, indeed §* extends .

Let I = Ip(8) < Ig(8). Since T/T; S F;/C; acts ﬁxed—point—ﬁecly on V,
I'=TyN---NTs. By the hypothesis of this step, v € Irr (T') is a G-invariant
extension of 6* € Irr (M) (which in turn is a G-invariant extension of § €
Irr (N)). In particular 47 and 67 v; are Ig(é)-invariant extensions of 8* and
§6* (resp.). Since I =Ty N ---NTs, it follows from (12.1) that |[I/M]| = s3,
INT; (5 = 6,7,8) are distinct subgroups of I and |I : INT;| = s (j = 6,7, 8).
Let € € Irr (I/I NTg) be faithful. Since € and é* are linear, e§7y; extends
§6% € Irr (M16). Since I = Ip(6) = TN Ig(8) < Ig(6) = Ig(66*), there
exists P € Sylg(Ig(6)) such that edjvyis P-invariant. Since P fixes vy which
extends 8*, it follows (see Lemma 0.9) that P fixes ef}. But 6* is invariant
in I(6) and 634 is irreducible. Since P < I(8), indeed € is P-invariant. In
particular, P fixes ker(e) = INTs. But P € Syl3(1g(6)), and I¢(8)C/C has
order 3 and stabilizes {Vj,...,Vs}. Then PC/C = I5(§)C/C transitively
permutes {Vs, V7, V3} and thus also transitively permutes {Ts,T7, Ts}. But
P fixes Ty, whence Tg = Ty = Tg. This contradiction completes Step 8.
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Step 9. Suppose that W/M is a chief factor of G and an s—groub for a prime "
s, st |L/F|. Assume there is an L-invariant extension v € Irr (W[67). Then
|W/M|=s=1,p=3,and W/M < Z(K/M).

Proof. Now a +— av is a bijection from Irr (W/M) onto Irr (W|6*). For
g € G, v9 = a, for a unique o, € Irr (W/M) and

L =L =I(v") = I(agy) = IL(ey).

By Step 8, we may assume that 7 is not G-invariant and hence L = I(a)
for some 1 # a € Ir (W/M). Since W/M is a chief factor of G, W/M <
Z(L/M). By, Step 7, W/M is cyclic of prime order s and W/M < Z(K/M).

By Lemma 0.17 (d), there exists v, € Irr (W]0*) that is invariant in a
Hall s’-subgroup H/M of G/M. Now v, = §v for a linear ¢ € Irr (Iv’V/IV[).‘
Since W/M < Z(I{/M), certainly § and y; = 6y are L-invariant. Thus it is
no loss to assume that v is LH-invariant. By Step 8 again, we may assume
v is not G-invariant. Thus s | |G/L|. Since s # p = |G : K| and since
K =L whenp=2,indeedp=3ands=|K:L|=T.

Step 10. Assume that S/M € Syl,(F/M) for a prime s, s { |L/F|. Then

one of the following holds:

(i) @* is fully ramified with respect to S/M, or
(ii) p=3,s =7, and S/M is cyclic.

Proof. By Lemma 12.6, there exists M < H < § such that each o €
Irr (H|6*) extends 6* and is fully ramified with respect to S/H. Also H QG
because 8* is G-invariant. We may assume H > M. By Lemma 0.17 (d),
there exists an L-invariant A € Irr(S|0*). Now X is fully ramified with
respect to S/H and the unique irreducible constituent o of Ay is an L-
invariant extension of 8* to H. If M < W < H and W d G, then ow is an
L-invariant extension of 8* to W. Since H > M, Step 9 implies that p =3

and s = 7.

Since H/M is abelian and central in F/M and since 7 { |L/F|, Fitting's,



Lemma 0.6 implies that H/M = A/M x Ay/M for A, Ao QG and A/M =
Crym(L/F). Suppose that Ay > M and choose M < W < A, with W/M a
chief factor of G. Since oy is.an L-invariant extension of 6%, Step 9 implies
that W/M is cyclic and W/M < Z(I{/M). Then W/M is centralized by
L/F, a contradiction. Thus Ag = M and H/M is centralized by L/F.

We again apply Fitting’s Lemma 0.6 to write S/M = D/M x E/M with

D, E<dGand D/M = Cs/m(L/F) > H/M. By Step 7, D/M is cyclic. By
the first paragraph of this step, we have o € Irr (H) and A € Trr (S|o) that
are fully ramified with respect to S/H. By Lemma 12.4, o is fully ramified
with respect to D/H. Since D/H is cyclic, in fact D = H by Lemma 12.5.
Because H > M, rank (E/M) = rank (S/M)~1 < 7 using Step 6 (iii). Now
E/M = S/H has even rank by Lemia 12.5, and so 2 < rank (E/M) < 6
or E =M. By Step 7, E = M or Co/m(E/M) < C/M. By Lemma 9.12,
E=M. Thus S =D = H and S/M is cyclic, completing this step.

Step 11. If C' > F, then p=3and C/F is a 2-group.

Proof. By Step 6 (iv, v), there exist a prime 7 and Sylow r-subgroup R/M
of F/M such that F/M = Co/m(R/M) and r { |L/R|. Since (G/M) =
K/M > F/M, we see.that R/M is not cyclic. By Step 10, 6* is fully
ramificd with respect to /M. Thus rank (RR/M) is even, and by Step 6
rank (R/M) < n. If p = 2, then Corollary 9.11 yields that rank (R/M) =n
because C' > F. For p = 2, n is odd, a contradiction. Hence p = 3 and

n = 8.

Pick 1 X/F €Syl(C/F) for some prime. By Lemina 12.5 (b), rank(X/F)
<rank(R/M)/2 < 4. By Lemma 9.10 (c), X/F is a 2-group and thus so is
C/F. '

Step 12. p = 2.

Proof. Suppose then that p = 3. Let S/M € Sylz(F/M) and T/M €
Syh(G/M): By the last paragraph, C/F and hence L/F are 2-groups. In

Vbt s TR N

particular, |T: S| =7=|K : L|.

We claim that no p € Irr (S16) is T-invariant. For if u were T-invariant,
then Lemm.a 0.17 (d) guarantecs the existence of € Irr (L|x) such that 7
is invariant in ' = LT. Since n € Irr (L|6) and 3 { x(1) for all x € Irr (G|6),
indeed 7 is G-invariant. But G/ L is non-abelian of order 21 and so 7 extends
to n* € Irr (G|0). But also there exists o € Irr (G/L) with o(1) = 3 and
on* € Irr (G|6), contradicting the hypotheses. Hence the claim holds.

If 6* is fully ramified with respect to S/M, the unique irreducible con-
stituent of (8*)° is G-invariant, contradicting the last paragraph. By Step
10, S/M is-cyclic. Since K/M = (G/M)', S/M < Z(K/M). In particular,
T/M is abelian. If T/M is cyclic, then 8* extends to ¢ € Irr (7). Then
(s € Irr (S516) is T-invariant, contradicting the last paragraph. So T/ is

abelian but not cyclic.

Since V' = Irr (M/N) is a faithful irreducible G/M-module and S/M is
a cyclic normal subgroup of G/M, Cg/p(v) = 1 for all v € V#. Because
T/M is abelian and not cyclic, it is not the case that Cr/p(v) = 1 for all
0# v €V. So we may choose A € Irr (M/N) such that I7()\)/M has order
s and Is(A)/M = 1. Now IT(\6*) = I7()\) and (A8*)° € Irr (S|6), invariant
in SIp(A) = T. This is a contradiction to the second paragraph of this step.

Hence p # 3.

Step 13. Let t € G with Mt an involution in G /M. Then t fixes exactly one

V;. Furthermore the centralizer in V; of ¢ has order om/2 op 2m,

Proof. Now G/C = Ds or Dyq permutes Vi,...,V, with n = 3 or 5 (re-
spectively). An involution in G/C fixes exactly one V; and permutes the
others in pairs. Now Ng(V})/C has order 2. Since F' = C by Step 11, C/C;
is cyclic of odd order. Since each v € V; is centralized-by an involution
of Ng(V;) and since we may assume that t € Ng(V;) does not centralize
Vj, we have that O3(Ng(V;)/C;) =1 and Ng(V;)/C; acts faithfully on V;.
Since Ng(V;)/C; has a cyclic normal subgroup of odd order and index 2,
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there is a Frobenius group H/C; < Ng(V;)/C; with Frobenius complement
of order 2. Without loss of generality, t € H and Lemma 0.34 implies that

the centralizer of ¢ in V; has order |Vj|l/2 = gm/2,

Step 14. Conclusion.

Since p = 2, F' = C by Step 11. We have that L-= K has index 2 in G,
and L/C regularly and transitively permutes {V1,...,V,} (n = 3 or 5). Let
X = {(v1,v2,...,Vn) I all v; are non-zero}. Since F' = C, the cyclic group
C/C; acts fixed-point-freely on V;. Thus Ig(a) = (C; = M for all a € X
and Ig(a)/M < G/C = Day. Since 2 | |[Ig(a)/M|, Ic(a)/M = D, or
has order two. In either case, af* extends to Ig(a) = Ig(af*). Since each
v € Irr (Ig(af*) ’ af*) must have odd degree, each irreducible character of

I(a)/M must also have odd degree because af* extends to I(«). Thus
[Hg(a)/M| =2 forall a € X.

Now let ¥ = {(v1,...,v5) | exactly one'v; = 0}. Let § € Y so that
CIg(B)/C has order 2. Without loss of generality, § = (0,va,...,v,) with
v; # 0 for i > 1. Then CIg(f) = Ng(V;) and so I¢(f)/I1c(8) 2 Ng(V3)/C
has order 2. Since C/C; acts fixed-point-freely on V;, I¢(f) = CoN--NCy,
and I;(f)/M is isomorphic to a subgroup of the cyclic group C/C). Thus all
Sylow subgroups of I(8)/M are cyclic. Thus 38* extends to an irreducible
character of Ig(f) = Ig(B6*). Since each n € Irr (G|36*) has odd degree,
every § € Irr (Ig(B)/M) has odd degree. Since |Ig(3)/CaN---NCy| =2
and Cy, N ---NC,/M is cyclic of odd order, in fact I(8)/M is cyclic. In

particular, § is fixed by a unique Sylow 2-subgroup of G/M, and so is each
element of Y. '

Now Ig(8)/M < Ng(V1)/C) in its action on Vq. If Mt is the involution
of Ig(f)/M, then the centralizer in Vj of ¢ is CoN -+ - N Cy-invariant. Hence

t centralizes V; or Co N ---N C,, does not act irreducibly on V7.

Assume for this paragraph that Co N ---N C,, = M. Consequently, the
intersection of any (n — 1) distinct C; is M. Set Z = {(vy,...,v,) | exactly
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two v; are zero}. Let v € Z, say v = (0,0,v3,...,vn). Then Ic(7)/M =
C3n:--NCr/M < C/Cy and Ic(y)/M is cyclic. We argue as in the second
paragraph of this step to show that Ig(y)/M contains a unique involution.

IfCyn---NC, = M, then each element of Z is fixed by a unique involution
of G/M. ’

Now Mf¥ is an involution of G/M stabilizing V; and permuting the other
V; in pairs. Let 2! = |Cv, (¢)], so that I = m or I = m/2 by Step 13, recalling
[Vi] = 2™. Observe that ¢ centralizes (2' —1)(2™ — 1)("=1D/2 elements of X,
(2™ —1)("=D/2 clements of ¥ and (2' = 1)(2™ ~1)"=9/%(n —1)/2 elements
of Z (of course n is 3 or 5). A Sylow 2-subgroup of G/M has order 2 and
all involutions of G/M are conjugate. The first and second paragraphs of

this step show that each element of X UY is fixed by a unique involution of

G/M. Thus
(2' = 1)@ = DTV, (G/M)] = X | = (t?"‘ - " (122)
and
(2" = 1) syly(G/M)| = Y| = n- (27 = )Y, (12.3) |

Now (12.2) and (12.3) yield-that 2™ — 1 = ﬁ(2’ — 1) and | # m. Thus
I =m/2 by Step 13 and n = 2™2 4 1. By (12.2), we now have

n=23, |[Vi|=2% 1=1,|C/Ci|=3, and |Syls(G)| =9

or

n=5 |V|=2' 1=2,|C/Ci| =15 and |Syl;(G)| = 3% 5°

If, in addition, Cy N --- N C, = M, the last paragraph implies that each.

element of Z is centralized by a unique involution, whence
(2! - 1)(2™ — ) ~ 1[SyL(G/M)] =212] = nfn — @™ ~1)"

and (2' = 1)|Syla(G/M)| = n(2™ = 1)("~V/2, For n = 5, this is a contradic-
tion. Hence CoN---NC,, > M when n = 5.
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Suppose that n'=5. Now 1 # (C,N---NCs)/M < C/C) in its action on
V1. Since Mt does not centralize Vi, the third paragraph of this step implies
that (C, N--- N C5)/M does not act-irreducibly on V;. Since |C/Cy| =15
and |Vy| = 24, it follows that |(Co N --- N Cs)/M| = 3.- By conjugation,
|H/M| = 3 whenever H is the intersection of any four distinct C;. But a
Sylow 3-subgroup T/M of C/M is elementary abelian of order at most 3°
(see Step 6 (iii)). Thus |T/M| = 3°. Since T/M € Syls(G/M), 6* is fully
ramified with respect to T/M by Step 10. Hence rank (T//M) is even by

Lemma 12.5. By this contradiction, n = 3.

Since |C/C;i| = 3 = |K/C|, we have that I{/M is a 3-group of order
at most 31. By Step 4, K/M is not cyclic. If J/M = (K/M)', then
I/J is not cyclic. Because O% (G/M) = G/M and |Syly(G/M)| = 32,
it follows that G/I{ acts fixed-point-freely on I{/J and |K/J| = 3%. Fur-
thermore J/M must be centralized by a Sylow 2-subgroup of G/M. Since
0% (G/M) = G/M, in fact J/M = Z(G/M). Since exp(C/M) = 3, Step 7
yields that |J/M| = 3. Now J/M < C/M must act on V) non-trivially. In
particular, Cg(V1)J/Cg(Vh) is isomorphic to J/M and is a central subgroup
of Ng(V1)/Cg(V1). Since Ng(V4)/Cq(V1) < Ss, in fact Ng(Vh)/Ca(Vh)
has order 3. Thus Mt centralizes V. This final contradiction completes the

proof of the theorem. ]

The motivation for Theorem 12.9 is the next theorem; Brauer’s height-
zero conjecture for solvable groups. Recall that this conjecture states that a
defect group D of a p-block B is abelian if and only if every x € Irr(B) has
height zero. If D is abelian and G is p-solvable, then Fong [Fo 1] proved that
every x € Irr(B) has height zero via “Fong reduction”. Indeed the proof
below in this direction works just as well for p-solvable. For the converse
direction the i)roof is Theorem 12.9 and Fong reduction (below). Fong
proved the converse direction for the principal block B (via Fong reduction
and Ito’s Theorem 12.8) or when p is the largest prime divisor of G [Fo 2].
We mention that Theorem 12.10 extends to p-solvable G (see [GW 2]).

12.10 Theorem. Let D be a defect of a p-block B of a solvable group G.
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Then every x € Irr (B) has height zero if and only if D is abelian.

Proof. By induction on |G : O, (G)|. Let K = 0,/(G) and choose ¢ €
Irr (K) such that B covers {¢}. Let I = Ig(p). By Lemma 0.25, there
exists a block b of I such that character induction is a height-preserving
bijection from Irr(b) onto Irr (B). Furthermore b and B share a cornmon
defect group Dy = D.

Now every 1 € Irr (b) has height zero if and only if every x € Irr (B) has
height zero. If I < G, the inductive hypothesis implies that every ¢ € Irr (b)
has height zero if and only if D is abelian. The result then follows easily.

Hence we assume that G = Ig(p).

By Theorem 0.28, Irr (B) = Irr (Gly), and the defect groups of B are
Sylow p-subgroups of G. If each x € Irr(B) has height zero, then p 1 x(1)
for all x € Irr (G|p). By Theorem 12.9, G has abelian Sylow p-subgroups,
i.e. the defect groups of B are abelian. To prove the converse, now assume

G has abelian Sylow p-subgroups. We show p { f(1) for all 8 € Irr (G|y).

Let M/K = O,,(G/I). By Lemma 0.19, M/ > Cg/i(M/K). Since
D € Syl,(G) is abelian, I{D /I centralizes M /K. Thus M = ID. Since ¢
is M-invariant, ¢ extends top € Irr (M) by Theorem 0.13. Since D = M/K
is abelian, every 1) € Irr (M|p) extends ¢. In particular p (1) for all 3 €
Irr (M|p). Since G/M is a p'-group, p{ x(1) for all x € Irr (Gep). O

\

" *One can ask a number of questions related to the theorems in this section.
For example, if § € Irr (N) with N 9 G and p*t! { x(1)/6(1) for all x €
Irr (G|6), can we give a bound for dI(P) where P € Syl,(G/N)? The answer
is yes, namely 2e + 1. We refer the reader to Corollary 14.7 (a) for a proof.
Consequently one can bound the derived length of a defect group of a block
B of a p-solvable group in terms the maximum height in Irr (B). By the
way, there is no generalization of the converse of Brauer’s height conjecture,
since it is easy to find p-groups of derived length two that have arbitrarily

large degrees of irreducible characters.

"
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Similar questions about Brauer characters may also be asked. But an-
other twist may be added, since we can discuss the situation where ¢ { ¢(1)
for all ¢ in some subset of IBr,(G) in the two cases, ¢ = p and ¢ # p. In
Section 13, we discuss and prove analogues of Ito’s Theorem for both p = ¢
and p # ¢. In Section 14, we show there is no analogue of Theorem 12.9
for Brauer characters when p = ¢ (i.e. {¢} = 7), but do give a result when

p # q and some generalizations.

§13  Brauer Characters of ¢'-degree and Ito’s Theorem

In this section, we investigate the set of p-Brauer characters IBr,(G). If
G is a p'-group, we shall freely use the existence of the natural bijection
Irr (G) — IBr,(G) (see Lemma 0.31). For example, if A is an abelian p'-
group and H acts on A, then H acts faithfully (irreducibly, resp.) on A if
and only if H acts faithfully (irreducibly, resp.) on IBr,(A) by Proposition
12.1. :

13.1 Theorem (Ito). Let p be a prime and P € Syl (&).
(a) If P 94 G and P' =1, then p{ x(1) for all x € Irr (G).
(b) If P <4 G, then pt B(1) for all § € IBr,(G).
(c) If G is p-solvable, then the converses of (a) and (b) also hold.

Proof. (a) By [Is, 6.15], x(1) ‘ |G/P| and the conclusion Lolds.
(b) Recall that O,(G) is contained in the kernel of each p-modular ir-

reducible representation (see Proposition 0.20). Thus A can be considered
as an element of IBr,(G/P) and hence in Irr (G/P). Therefore, (b) follows
from (a).

(c) We first show in l;oth cases that P <1 G. Let M be a minimal normal
subgroup of G. By induction on |G|, G/M has a normal Sylow p-subgroup
N/M = MP/M. We may assume that N = G and also that p{ [A], since

otherwise G would have a normal Sylow p-subgroup. The hypotheses imply
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that Ig(¢) = G for all p € Irr (M), i.e. P acts trivially on Irr(M). By
Lemma 12.2, P < Cg(M) and thus P 9 G. For the converse of (a), note
that Clifford’s Theorem implies that p { (1) for all ¢ € Irr (P). Since
(1) | [P|, we have that 1 is linear and P is abelian. O

Part (c) above is not the full truth, namely the hypothesis “p-solvable” is
superfluous, as Michler [Mi 1,2] and Okuyama [Ok 1] showed. This depends
on the classification of finite simple groups and we comment on the proof at

the end of-this section.

Theorem 13.1 provokes the following question: What can be said about
G if there exists a prime q # p such that ¢ { B(1) for all § € IBr,(G)?
For solvable G, we show that the g-length /,(G) of G is at most 2 and
lp(O"'(G)) < 3. These results rely on Sections 9 and 10.

13.2 Example. Let p and r be distinct primes, and let ¢ be a prime
and b € N such that ¢ { r? — 1. We consider H < AT'(r?), where the
field automorphisms in H only consist of a group of order ¢; hence |H| =
r9®. g (r%® —1). Since |H/H'| = q(r® — 1), we may take G < H of order
|G| = 71 ¢ (r1® = 1)/(r* = 1). Now AT(r%) transitively permutes the
non-principal characters of IBr,(AI'(r?)). The inertia group in AT'(r*) of
1 # A € IBr,(A(r)) has index 79 — 1. Since A(r®) < G < H < AT(r?),
q1|G : Ig(N)|. Assume now in addition that (r%—1)/(r®=1) = p® for some
a € N. Then all # € IBr,(G) have degree 1 or p*; in particular, ¢ { (1) for
all g. :

Observe that ¢ = r is not forbidden. In this case, G has ¢-length 2.
Small examples are A'(2?) = Sy with p = 3 and ¢ = 2 = r, and AD(2°)
withp=7,¢=3andr =2.

Asin Section 12, the primes ¢ =2 and 3 require some extra considerations.

13.3 Lemma. Let p be an odd prime and assume that 2 { (1) for all
B € IBr,(G). If O¥(G) is solvable, then O% (G) is a {2, p}-group.
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Proof. We argue via induction on |G|, and may thus assume that G =
0% (G). Let M be a minimal normal subgroup of G. Then G/M is a {2,p}-
group and (| M|, 2p) = 1. We may also assume that M is the unique minimal
normal subgroup of G. Therefore M = Cg(M), because (|M|, |G/M]) = 1.
We consider the faithful and irreducible action of G/M on IBr,(M). By
our hypotheses, 21 |G : I¢(A)| for all A € IBr,(M) and Lemma 9.2 yields
char(M) = 2, a contradiction. O

Next is an immediate consequence of Theorem 9.3.

13.4 Lemma. Suppose that G = 0% (Q)isa {2, p}-group for an odd prime
p. Assume that G acts faithfully and irreducibly on a finite vector space V
in such a way that 24 |G : Cg(v)| for all v € V. If there exists C < G such

that C' is maximal with respect to C 4 G and V¢ non-homogeneous, then
(1) G/C = Dg andp = 3;
(ii) Vo = Vi@ V2@ Vs for homogeneous components V; that are faithfully
permuted by G/C;
(iif) |Vi| = 2% and C acts transitively on V;¥; and

(iv) There is a non-zero vector € V such that Cg(v) has a normal

2-complement.

—

Proof. Since 0%(G/C) < G/C, it follows from Proposition 0.2 and Theo-
rem 9.3 that G/C = Dy, for n = 3 or 5, and that Ve =V, @ .- @V, for
homogeneous components V; that are faithfully and primitively permuted
by G/C. Also, C acts transitively on V,# By Lemma 9.2, char(V) = 2,
say |V;| = 2* for some a > 2. Since C is a'{2, p}-group, we conclude that
2% — 1 = p® for some integer b. As the {2,p}-group G/C = D,, transitively
permutes the V;, it follows that n = p = 3 and therefore 3 = p = 2% — 1 (cf.

Proposition 3.1). Thus |V;| = 2% and (i)-(iii) have been proved.

To establish (iv), let = = (2,,0,0) € V with z, € V¥, Cleatly 2 =
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|Ca(x)C/C) = [Cal=)/Ce(x)]. As

3 ' ’ v
Ce(z) S [[ C/Ce(Vi) S Sa % Sa x 85,

i=1 )

Cg(z) has a normal 2-complement. (]

13.5 Proposition. Let M be a minimal normal subgroup of a solvable
group G, let D = Cg(M) and p be an odd prime. Suppose that 0% (@) =
G, pt M| and 2 { B(1) for all § € IBr,(G). Then I,(G/D) < 1 and
I,(G/D) < 1. -

Proof. We set V = IBr,(M) and may clearly assume that D < G and
|G/ D] is even. By our hypotheses, we have that 2 { |G : Cg(v)] for all
v € V, and that V is a faithiful and irreducible G/D-module. If V is (nasi-

primitive, it is iminediate from Theorem 10.4 that the assertions hold.

We may thus assume that V is not quasi-primitive, and by Lemma 13.3, G
is a {2,p}-group. Applying Lemma 13.4, we obtain that p = 3, char(V) =2
and there exists A € V such that Cg())/D has a normal 2-complement
L/D. Set I = Cg()) and choose o € IBrs(I|A). Since ¢ € IBry(G), our
hypotheses imply that 2 { 0¢(1) = ¢(1)-|G : I|. Therefore I/L is isomorphic
to a Sylow 2-subgroup of G/D and oy, is irreducible. Thus oy € IBry(I{\)
for all p € IBry{I/L) (see Lemma 0.9). Now op in the role of ¢ yields that
24 (op)(1) and p(1) =1, because I/L is a 2-group. Consequently, I/L and
the Sylow 2-subgroups of G/D are abelian. By Lemma 0.19, l;(G/D) < 1.

It remains to show that {3(G/D) < 1. By Lemma 13.4, there exists

C 4 @ such that G/C = 53 and C’/D < S5 x S3 x S3. Consequently,
there exists a series D < B < C < @ of normal subgroups of G such that

B/D is a 3-group and C/B a 2-group. If O3(G/D) = B/D, then G/B

has a normal Sylow 2-subgroup, because lo(G/D) = 1. This contradicts -

G/C = S3. Therefore, G/D has a normal Sylow 3-subgroup and the proof

is complete. 0

Foel g.qﬁé Z_—;_«Cé o ZJ
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After these preparations for the prime ¢ = 2, we turn to the other “crit-
ical” prime ¢ = 3.

13.6 Lemma. Let p be a prime distinct from 3. Assume that G = 03’(G)
is a solvable group that acts faithfully and irreducibly on a finite vector
space V. Suppose that 31 |G : Cg(v)| for all v € V, and that 31 f(1) for

all p € IBr,(G). If V is not quasi-primitive, then the following assertions
hold:

(1) p=Tand I;(G) <2
(i) I3(G) = 1; and \ ‘
(iii) There exists ¢ € V# such that 2 | 1G : Ca(z)].

Proof. Choose C' maximal with respect to C <G and V¢ non-homogeneous.
Since 3 | |G/C|, but 31 |G : Cg(v)] for all v € V, it follows from Proposition
0.2 and Theorem 9.3 that G/C = AT'(2%) and that Vo = V1 @ - @ Vs for
homogeneous components V; which are primitively and faithfully permuted
by G/C. Furthermore, C acts transitively on each Vi#. As AT(2%) has
a factor group isomorphic to the Frobenius group F3y; of order 3 -7, the
hypothesis about Brauer characters applied to Fpi implies that p = 7. It
also follows from Huppert’s Theorem 6.8 that either C is metabelian or
741]C|. Consequently, I7(C) <1 and I7(G) < 2, proving ().

Remember that G/C = AT(2%) has a unique-chief series C < L < K < G,
where |L/C| = 2%, |K/L| = 7 and |G/K| = 3. Also note that O3(G) <
Cqe(V) and thus Oa(G) = 1. If 74 |C|, then the condition on Brauer
characters implies that every p € Irr(C) has 3'-degree. Since O3(C) =
03(G) = 1, Theorem 13.1 yields that 3 4 [C|. Thus, to prove (ii), we may
assume that 7 } |C|. By the first paragraph, C is metabelian. Set X =
O3/(C). Then C/X is an abelian 3-group. We show that I /C centralizes
C/X. If not, then there is a chief factor C/D of G such that K/C %
Cg/c(C/ D), because 3 { |K/C|. Set W = IBr,(C/D). Then W is an
irreducible G-module, and the hypothesis about Brauer characters implies

that 31 [G : Cg(A)| for all A € W. Suppose that G/C acts faithfully on
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W. Then Wy is homogeneous (by Theorem Q.Bj and thus L/C 1s cyclic.
This contradiction shows that Cg(W) = L. Now G/L = F3; and so each
X € W# is fixed by exactly one of seven Sylow 3-subgroups of G/L. Let
R € Syl3(G/L), and set |W| =3 and |Cw(R)| = 3*. Counting yields

3 —1=|W|-1=[Syl(G/L)|- (ICw(R)| - 1) =7-(8" — 1).

In particular, b l a and we obtain 7 = (3%)(a/¥)=14...4.3% 11 a contradiction.
Thus IX’/C < CG/C(

C/X). So G has a normal 3-complement and assertion
(ii) follows. ‘

To prove (iii), consider & = (z1,0,...0) € V with z; € V,#. Since L/C
regularly permutes the V;, certainly 2 | |G : Cg(z)| holds. -

Before we reach the main results of this section, we observe the following
fact.

13.7 Lemma. Suppose that ¢t (1) for all B € IBr,(G), where ¢ # p. If
M 4 N <G such that N/M is a g-group, then N/M is abelian.

Proof. By Clifford’s Theorem and since pt|N/M|, we have that ¢ 1 (1)

for all ¢ € Irr (N/M). But ¢(1) ‘ |N/M| for all such ¢. So ¢(1) = 1 and

N/M is abelian. O

13.8 Theorem. Let p, ¢ be distinct primes. Assume that 09'((}') is solvable
and that ¢{ 8(1) for all B € IBr,(G). Then

(1) In each g-series of G, the q-factors are abelian; and

(2) 1,(G/0,,4(G)) < 1.

In particular, a Sylow g-subgroup of G is metabelian.

Proof. Since assertion (1) immediately follows from Lemma 13.7, it remains

to prove assertion (2). As 0,,,(07(G)) < 0, ,(G), we may assume that
G = O7(G). We may also assume that O,(G) =1 Tt thue cnffians oo
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that [,(G/F(G)) < 1. By Gaschiitz’s Theorem 1.12, F(G)/®(G) =V
... @V, is a faithful completely reducible G/F(G)-module with irreducible
constituents Vi. Set C; = Cg(Vi) and W; = IBr,(V;). Since char (V;) # p
for all 7, the W; are faithful and irr‘cduciblc G /Ci-modules. Our hypothesis

about the degrees of Brauer characters implies that ¢t |G : Cg(A;)] for all
AieWii=1,...,n

If W; is quasi-primitive, then Theorem 10.4 immediately yields that
1,(G/C;) < 1. If however W is not quasi-primitive, then ¢ = 2 or 3, by The-
orem 9.3. In the first case, it follows from Proposition 13.5 (with V; in the
role of M) and in the second case from Lenuma 13.6 that 1,(G/C,) < 1. Since
N, Ci = F(G), we have shown that l,(G/F(G)) < 1, as desired. )

We next bound the p-length of OQI(G) under the hypotheses of Theorem
13.8.

13.9 Theorem. Let p, q¢ be distinct primes, let N = Oq’(G) be solvable
and assume that q 1 8(1) for all B € IBr,(G). Then

(1) L(V/O,(N) <1, or

(2) 1,(N/OH(N))y=2 and (p,q) = (7,3). In this case, there exists
p € IBr(G) with p(1) even.

Proof. We may assume that G = N and O,(G) = 1. We again write
F(G)/®(G) =Vi®- - @V, with irreducible G-modules V;, set C; = Cg(V;)
and W; = IBr,(V;), and observe that ¢ |G : Cg(Ai)| for all A; € Wi,
1=1,...,n. .,

If W; is quasi-primitive, then ,(G/C;) < 1 by Theorem 10.4. Otherwise,
Theorem 9.3 yields ¢ = 2 or 3. It follows from Proposition 13.5 and Lemma
13.6 that [,(G/C;) < 1in the first case, and that p =7 and I7(G/C;) < 2in
the second case. Since ();Ci = F(G) and p t [F(G)], we obtain [,(G) <1,
or 1,(G) <2 and (p,q) = (7,3), as required.

) Coondis Ly boiuo wi oo |G D RGTCDRS 1583

We still have to prove the existence of the character p in the exceptional
case (2). By the previous paragraph, we may assume that W; is not quasi-
primitive. Applying Lemma 13.6 (iii), there then exists A € W) such that
2 | |G : Ic(\)]. For p we may thus choose any element of IBr7(G|A). O

13.10 Corollary. Assume that G is solvable and (1) is a p—pétver for all
B € IBr,(G). Then O?(G)/0,(O?(G)) has p-length at most 1.

Proof. Without loss of generality, 0,(G) = 1. Set I =[], O7(G) =
O?(@G). It follows from Theorem 13.9 that IP(O"'(G)) < 1 for each ¢ (the

exceptional case with (p,q) = (7,3) is ruled out by the existence of p &
Irr(O7(G)) of even degree). Thus I,(I) < 1. O

Example 13.2 shows that the assertion of Theorem 13.8 is best possible.
Under certain circumstances however we have a statement analogous to

Theorem 13.1 (c), as we shall see next in Theorem 13.12.

13.11 Lemma. Let p, ¢ be distinct primes and assume that the solvable
group G = OY(G) # 1 acts faithfully and irreducibly on a finite vector
space V. Suppose that ¢ { |G : Cg(v)| for all v € V and ¢ 1 p(1) for all
B € IBr,(G). Then q | p—1lor(pq) =(2,3).

Proof. Suppose that V is quasi-primitive. We may assume by Theorem
10.4 that N := O%(G) is cyclic. Now p { |G/O,(N)| and thus each « €
Irr (G/O,(N)) has ¢'-degree. By Theorem 13.1, and the hypothesis that
07 (G) = G, it follows that G/O,(N) is a g-group. Then N is a cyclic
p-group. Since O4(G) = 1, we obtain ¢ \ p—1

Suppose secondly that V is not quasi-primitive. By Theorem 9.3, we
have that ¢ = 2, or ¢ = 3 and G has a factor group isomorphic to AT'(23).
If ¢ = 2, then p is odd and the assertion trivially holds. Since AI'(23) has a

_factor group isomorphic to the Frobenius group of order 37, the hypothesis

about Brauer characters forces p = 7 and again ¢ , p—1 O

—

1
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13.12 Theorem. Let p, q be distinct primes, let O?'(G) be solvable and
assume that ¢t (1) for all § € IBr,(G). If ¢t p—1 and (p, q) # (2,3), then
G/0,(G) has a normal abelian Sylow g-subgroup.

Proof. We may again assume that G = O¢(G) and O,(G) = 1. By
Lemma 13.7 it is enough to show that G = F(G). To do so, we write
F(G@)/®(G) =V1&---@V, with irreducible G-modules V;, set C; = Cg(V;)
and W; = IBr,(V;), and observe that our hypotheses imply ¢ { |G : Cg(Ai)]
for all A\; € Wi, i =1,...,n. Since ¢ { p—1 and (p,q) # (2, 3),.it_ follows
from Lemma 13.11 that G/C; =1 for all j = 1,...,n. Now (; C; = F(G)
and we get G/F(G) = 1, as required. O

13.13 Remarks. (a) (Michler, Okuyama) Let p be a prime and
P € Syl,(G).
(i) If pt x(1) for all x € Irr (@), then P 4G and P’ = 1.
(i) If pf B(1) for.all B € IBrp(G), then P 4 G.

To prove (i) or (ii), it suffices to show that P < G. To this end, one may
repeat the arguments of Theorem 13.1 (c) to conclude that G has a minimal
normal subgroup M, that M is non-solvable and p | |M]|. In particular,
M = E x --- x E for a non-abelian simple group E such that p l |E|. One
then wishes to obtain contradictions by showing the existence of x € Irr(E)
and p € IBr,(E) with p

of the classification of simple groups, although Okuyama [Ok 1] has given_a

x(1) and p | ©(1). This can be done with the help

direct proof that a simple non-abelian group has a Brauer character of even
degree. For p odd, Michler [Mi 2] has shown that the simple group E has
a block B that is not of maximal defect, i.e. a defect group is not a Sylow
p-subgroup. Then the degree of every x € Irr(B)UIBr,(B) is divisible by p
(see Lemma 0.24).

(b) Does Theorem 13.8 also allow an extension to arbitrary finite groups
G? Clearly, it makes no sense to speak about the g-length of G any longer.

But we may ask the following question:
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Let p, ¢ be distinct primes and suppose that q t 8(1) for all B € IBr,(G).
Is @ metabelian for Q € Syl,(G)?

If so, it would be best possible. The solvable group S, has a dihedral
Sylow 2-subgroup and satisfies these hypotheses with ¢ = 2, p = 3 (see
Exampl; 13.2). To see a non-solvable example, we mention that the p-Brauer
character degrees of PSL(2,p) are {1,3,5,... ,P}, but a Sylow 2-subgroup
of PSL (2, p) is dihedral (see [HB, VII, 3.10] and [Hu, II, 8.10 (b)]).

It was mentioned in §12 that Theorem 12.9 remains valid for p-solvable
groups, depending on the classification of finite simple groups. One of the

facts needed is the following.

13.14 Theorem. Ifp+t|E| for a simple non-abelian group E, then Out (E)
has a cyclic and central Sylow p-subgroup.

Proof. See [GW 2, Lemma 1.3]. O

Also Theorem 13.8 extends to p-solvable groups. As the arguments are
much easier than those needed to extend Theorem 12.9, we present a proof.
13.15 Corollary. Let p, q be distinct primes, and assume that G is p-
solvable. If ¢ 4 (1) for all f € IBr,(G), then O7(G) is solvable. In
particular, the assertions of Theorems 13.8 and 13.9 apply.

Proof. We assume without loss of generality that G = 07 (G) and 0,(G)
= 1. Choose a non-solvable chief factor M/N of G with |M]| as large as
possible. Thus G/M is solvable. Since p { [M/N|, the hypothesis about
Brauer degrees implies that ¢ t x(1) for all x € Irr(M/N), and 13.13 (a)
yields ¢ { [M/N|. Since G = O"’(G),. it follows that M < G, and by the
maximality of M, G/M is isomorphic to subgroup of Out (M/N). Suppose
at first that M /N is simple. Then Theorem 13.14 implies that G/M is a ¢-

group. By our hypotheses, every irreducible Brauer and ordinary character
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of M/N is invariant in G. Hence @ € Syl,(G/N) centralizes M/N by
Lemma 12.2. This contradicts G = 07 (G).

We 1nay now assume that M/N is not simple, Then G induces a non-
trivial transitive permutation group on the simple components of M/N. We
may write M/N = 5; x---x 5, with n > 1 isomorphic non-solvable groups
S; that are primitively permuted by G. Let C < G be the kernel of this per-
mutation action, and fix 1 # «a; € Irr'(S;),7=1,...,n. For A C {1,...,n},
consider [];c o @i € Irr (M/N). Since this character must be invariant under
some @ € Syl,(G), we conclude that 1 # QC/C € Syl,(G/C) stabilizes A.
As G/C'is solvable, it follows from Corollary 5.8 that G/C is isomorphic
to Dg, Dyp or AI'(2%), n = 3, 5 or 8 (resp.) and ¢ = 2, 2 or 3 (resp.).
We now choose (g € Syl,(G) that stabilizes ay---«, € Irr (M/N). Since
,S¢}, 1t follows that ay(1) = -+ = ag(1).

Consequently, S; has at most two distinct ordinary character degrees. This

Qo transitively permutes {S57,...

however forces S; to be solvable (see [Is, Theorem 12.5]), a contradic-
tion. O

Most of the material of this section appeared in [MW 1]. Corollary 13.10
has been proved by R. Gow [Go 2] for groups of odd order.

§14 The p-Part of Character Degrees

In the two previous sections, we were concerned with the situation where
the degrees of ordinary or p-Brauer characters (resp.) of a solvable group
G are coprime to a given prime gq. We extend this.question a little bit and
consider the largest g-power which can occur as a factor in some character

degree.

14.1 Definition. Let G be a group and ¢ be a prime number.

(a) By eq(G) we denote the smallest non-negative integer e such that
! qe+1 t x(1) for all x € Irx (G). 7
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(b) For a prime p, analogously &,(G) denotes the smallest non-negative

integer f such that ¢/*14 (1) for all g € IBr,(G).

Note that = always refers to the given characteristic p. Also observe
that for N <G, eg(N) < ¢y(G) and €,(G/N) < ,(G) hold. The analogous
statements hold for &,. We are interested in bounding invariants of a solvable
group G in terms of e,(G) and &,(G), respectively. Such invariants are the q-
length [,(G), the g-rank r,(G) and the derived length dI (Q) for Q € Syl (G).
We remind the reader that the g-rank r(G) is the maximum dimension of

all g-chief factors of G.

Before we start, we state some useful relationships between the above

nvariants. The first fact is rather clementary (sce [Hu, VI, 6.6 ()]

14.2 Lemma. Let G be solvable and q be a prime. Then [,(G) <7r,(G).

The second bound does not at all lie at the surface. For odd primes ¢,
it is a consequence of Hall-Higman B (cf. [HB, IX, 5.4]). The case ¢ = 2
however was obtained more recently by Bryukhanova [Br 1], improving an

earlier result of Berger and Gross [BG].
14.3 Theorem. Let G be solvable, q a prime and Q € Syl (G). Then

1,(G) < dI(Q).

Indeed, 14.2 and 14.3 also hold for g-solvable groups, as will some of the
results of this section. However we shall restrict ourselves to solvable groups
only. Also see Remarks 14.12. The next proposition is valid for all p-solvable ~

G, as we prove later in Theorem 23.5, but it is not valid for arbitrary G even
when N = 1.

14.4 Proposition. Suppose that o € IBr,(N), N 9 G and y € IBr,,(Gla)
If G/N is solvable, then x(1)/a(1) | |G/N|.

i

—
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Proof. Arguing by induction on |G : N|, we may assume that N is a maxi-
mal normal subgroup. By the solvability hypot’hesis, G/N is cyclic. By
Clifford’s Theorem 0.8 and the inductive hypothesis, we can assume « is G-
invariant. By Proposition 0.11 and Lemma 0.9, x = Ay where i1 € IBr,(G)
extends a and A € IBr,(G/N). Since G/N is cyclic, A(1) = 1 and xny =
a. a

N
14.5 Lemma. Let ¢ be a prime and @ € Syl,(G). Assume that G is
solvable and acts faithfully and completely reducibly on a GF(g)-vector
space V. Suppose that ¢t |G : Cg(v)| for allv € V. Then

(i) dI(Q) £ 2; and
(i) if ¢ > 5, then d1(Q) < 1.

Proof. We may clearly assume that G = O9(G) # 1. IV = Vi @
-+~ @V, with irreducible G-modules V;, then G <[], G/Cg(V;) and Q; €
Syly(G/Ca(V;)) satisfies (i) or (ii), respectively, by induction. We may thus
assume that V is faithful and irreducible. If V is quasi-primitive, it follows

from Theorem 10.5 that either ¢ } |G| or @ is cyclic. Therefore @ is abelian.

We may now assume that V' is not quasi-primitive, and choose C' 4 G
maximal with respect to Vo = V1 @---@ V), non-homogeneous, where the V;
denote the homogeneous components. By Theorem 9.3, we have that ¢ < 3,
¢* }|G/C| and C/Cc(V:) acts transitively on V;*. In particular, assertion
(i1) holds. To establish assertion (i), it suffices to show that C has abelian
Sylow g-subgroups. As O,(C) = 1, we may assume that C" # 1 and thus
that C/C¢q(V;i) £ T(Vi). By Huppert’s Theorem 6.8, it follows that V| = 32
or 3% and 32 {|C/C¢c(V;)|. Since [);C¢(Vi) = 1, a Sylow-3-subgroup of C

is abelian also in this exceptional case. - O

The following is a modular analogue of Theorem 12.9, but with weaker

assertions.
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14.6 Theorem. Let N 4 G, G/N solvable, q and p distinct primes,
Q/N € Syly(G/N) and & € IBr,(N). Suppose that g } B(1)/a(1) for all
B € IBr,(G|a). Then

(i) dI(Q/N) < 3; and

(i) if ¢ > 5, then d1(Q/N) < 2. ‘

Proof. We argue, by induction on |G : N|. Observe that if N < I <
G and 7 € IBr,(K|a), then ¢ { 7(1)/a(1) and ¢ { v(1)/7(1) for all v €
IBr,(G|r). By Proposition 14.4, we ma)./ hence assume that Oy (G/N) = 1,
but ¢ | |G/N|. Let I = Ig(a). If 7 € IBr,(Ila), then 76 € IBr,(G|«)

vand 79(1)/a(1) = |G : 1] - 7(1)/a(1). The hypothesis on character degrees

implies that ¢t 7(1)/a(1) and that @ < T (up to conjugacy). We may thus
assume that.« is invariant in G.

Set M/N = O,(G/N) # 1 and let o € IBr,(M|a). Then g} a(1)/a(l1)
and since o(1)/a(1) | |M/N|, we obtain that oy = «. In particular, the
map A + ¢ - A yields a bijection from IBr,(M/N) onto. [Br,(M|a) (see
Lemma 0.9). It follows that all X € IBry,(M/N) are linear and M/N is
abelian, because ¢ # p. '

Let H/N be a Hall ¢'-subgroup of G/N. We apply Lemma 0.17 (d) to
find ¢ € IBr,(M|«) which is fixed by H. Hence |G : Ig(i)|is a g-power, and
the hypothesis about character degrees implies that I(p) = G. Lemma 0.9

and the hypotheses imply that Ig(p - A) = Ig()\) has ¢'-index in G for all
A € IBr,(M/N).

As Oy (G/N) =1, we have that F(G/N) = M/N is an abelian g-group.
Let N = Ny < Ny < ...Nn- = M such that N;/N;_1 is irreducible as
(G-module, and define C; = Cg(Ni/Ni—1) > M. Observe that N:Ci =M.
and that V; := IBr,(N;/N;_)) is an irreducible and faithful G/Ci-module
(+=1,...,m). Since M/N is abelian, each f§; € V; is the restriction of some
character in IBr,(M/N). By the previous paragraph, q1|G: Ig(Bi)|. We
apply Lemma 14.5 to the action of G/CionV;. As[;C; = M, a Sylow q-
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subgroup of G/M has derived length at most 2, and is even abelian provided

that ¢ > 5. Since (M/N)' = 1, the result follows. ~ a

Next is a consequence of both Theorem 12.9 and Theorem 14.6.

14.7 Corollary. Letyq \be a prime, N 4 G, let G/N be solvable and let
QIN € Sy1,(G/N).
(a) Suppose that ¢ € Irr (N) and ¢*F' { x(1)/(1) for all x € Irr (Glp).
Then dl(Q/N) < 2¢ + 1. _
(b) Suppose that p # q, o € IBr,(N) and ¢**' { f(1)/a(1) for all
B € IBr,(G|a). Then
(1).dl(Q/N) < 4e +3; and
(i) if ¢ > 5, then dl(Q/N) < 3e + 2.

Proof. (a) By Theorem 12.9, we may assume that ¢ > 1 and therefore
dl(Q/N) > 2. Walking along an ascending chief series of the solvable group
G,wefind N < K 4 G such that dl(KNQ/N) = 2. Again by Theorem 12.9,
there exists 7 € Irr (I(|a) such that ¢ | 7(1)/a(1). Therefore ¢° { x(1)/7(1)
for all x € Irr (G|r), and.induction on |G : N| yields that dl(QK/K) <
2(e — 1) + 1. Consequently

dL(Q/N) < dl(Q N K/N) + dI(QK/K) < 2e + 1,

as desired.
(b) The proof relies on exactly the same arguments, but using Theorem
14.6 in place of Theorem 12.9. ’ O

We now combine Tleorem 14.3 and Corollary 14.7 for N = 1 to obtain

the following result.

14.8 Corollary. Let ¢ be a prime, @ € Syl,(G) and G solvable. Then
(8) 1,(G) < dI(Q) £2-4(G)+1.
(h) Let p's# q. Then
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(i) lq(G) < dl(Q) <4 Eq(G) +3; and
(ii) if ¢ > 5, then lq(G) <dl(Q) <3 Eq(G) + 2.

If B € IBr,(G), then O,(G) < ker(f) and therefore €,(G) = €,(G /O, G)).
What remains is the question whether one can bound /,(G) and the derived
length of P/O,(G) € Syl,(G/O,(G)) in terms of &,(G). Although such
bounds turn out to exist, we procéed to show that they cannot be derived

“locally” as done in Corollary 14.7.

14.9 Example. Let p be a prime. For each non-negative integer n there
exists a solvable group G, whose center Z, is a cyclic p'-group, and a faithful
An € IBrp(Zn) such that the following statements hold:

(1) IBrp(GnlAn) = {xn} and p{ xa(1);
(2) L,(Gn/Zn) = n;

(3) 0 (Gn/Zn) = 1; and

(4) 0,(Gn/Z,) is abelian.

In pafticular it follows by Theorem 14.3 that the derived length of a Sylow

p-subgroup of (G,/Z,)/0,(Gr/Zy) tends to infinity as n — co.

Proof. We set Gy = 1 and construct the groups G, iteratively. Assume
now that G, has been found with the given properties. Let g be a prime with
2+# qg# pandgt |Gn[. For sufficiently large m, 'G',,/Z,, can be embedded

into GL(m, ¢). Since
A 0
A (O (AL)_I)

embeds G L(m, ¢) into Sp(2m, q), Go/Z. may be embedded into Sp(2m, ¢).
Let Q be extra-special of order ¢*™*! and exponent q. Then Gn/Zy acts
faithfully on @ and on Q/Z(Q), while centralizing Z(Q) (cf. [Hu, III, §13]).

Let H be the semi-direct product Q- G, and Z,,4; = Z(H) = Z(Q) X Z,.
Since p # g and ¢ { |G.|, the inductive hypothesis implies that Z,4; 1s a
cyclic p'-group. We fix a faithful A € Irr(Z(Q)) and let 8 € Irr(Q) be the
unique irreducible constituent of A?. Let 7 =  x 1z, € Irr(QQZ,). Now

=

-

ey
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Z;l =ker(r) and (|H : QZ.|,|QZ, : ker(7)|) = 1. Since X is H-invariant, so
are § and 7. By Theorem 0.13, 7 extends to x € Irr(G|6). Since pt|QZ,|,
we have that 7 € IBr,(QZ,). Now the restriction p of x to p-regular
elements of H is a positive Z-linear sum of irreducible Brauer characters of
H, yet gz, = 7. Thus p € IBr,(H) extending 7 and 6 € IBr,(Q). By
Lemma 0.9, & + o is a bijection from IBr,(H/Q) onto IBr,(H|6). We set
Ant1 = A+ Ay, a faithful irreducible character of the p’-group Z,41. Now
0-\, € Irr(QZ,) =IBr,(QZ,) and 8- A, is the unique (ordinary or Brauer)

irreducible character of Q@Z, lying over A,,4;.

If n € IBr,(H|0 - A,), then n € IBr,(H|0) and consequently n = p -«
for a unique a € IBr,(H/Q) = IBr,(H|lg). As Z, < ker(r) < ker(p),
we even have that o € IBr,(H|lg - An). Since H/Q = G, it follows from
the inductive hypothesis that IBr,(H|lg - A,) = {8} for some § satisfying
p{ B(1). Therefore, IBr,(H|0-A,) = {n=p-B} and pt ¢™ - B(1) = n(1).
Since 8 - A, 1s the unique irreducible constituent of Af_l_zf = (A X,)9%%n,

we also have IBr,(H|[A,41) = {n}.

Recall that G, /2, acts faithfully on Q/Z(Q) = (Q - Z,,)/Z.41, and
therefore a minimal normal subgroup of H/Z,;) must be contained in
(Q - Z.)/Zny1; We may thus choose a GF(p)-vector space V such that
H/Z, 4, acts faithfully on V and Cy(Q) = 1; in particular, Cy(H) = 1
holds. We define G, to be the semi-direct product V - H. Observe that
Z(Gny1) = Z(H) = Zpny is a cyclic p'-group, Op(Gny1/Znyr) = 1 and
0,(Gut1/Zy41) =(V - Zng1)/Zn41 is abelian. Applying the inductive hy-

pothesis, we furthermore have that
Z],(Gn+]/Zn+1) =1 + 17,(H/Zn+1) =1 + lp(Gn/Zn) =1 + n.

Since V is a p-group, o +— oy defines a bijection from IBr,(G, 1) onto
IBr,(H). Consequently, the last paragraph implies that IBr,(G41|Anq1) =
{xnt1} and ptxug(1). U

We next give estimates for the p-rank of G/0,(G) in terms of &,(G) =
g,(G/0,(G)). For that it is no loss to assume O,(G) = 1.
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14.10 Lemma. Let G be solvable and O,(G) = 1. Then
(a) rp(G) £ 2-&,(G); and ‘
(b) 7,(G) < &,(G) provided that |G| is odd or p ¢ {2} UDM.

0,(G/M). Since O,(G) = 1, M is a p'-group, and N/M acts faithfully
on both M and V := IBr,(M). Let Vy = V; @ --- @ V,, ‘with irreducible
N-modules V; and C; = Cn(V;). By Theorem 4.7, there exist A;, p; € V;.
such that Cy(A) N Cn(pi) = C; (1 = 1,...,n). Setting A = A\;--- X, and
[t = 1 fin, we obtain Cy(A) N Cp(p) = (); Ci = M. Without loss of
gencrality, we may thus assume that |[N/M| | [N : Cy(M)|* and therefore
IN/M]| | ©(1)? for all ¢ € IBr,(N|)). This implies that ¢ <2-2,(G), where
p':=|N/M|. As O,(G/N) = 1, induction finally yields

Proof. (a) Let M be a minimal normal subgroup of G and N/M :=

7(G) < max{r,(G/N), t} <2-&,(G),

as required.

(b) Under the hypotheses of (b), Theorem 4.4 yields the cxistence of
vi € V; such that Cy(v;) = C; (1 = 1,...,n). The result now follows along
the same lines as in part (a). O

14.11 Theorem. Let G be solvable. Then
(a) ,(G) <2-£,(G) +1; and
(b) 1,(G) < &,(G) + 1 provided that |G| is odd or p ¢ {2} U 9N,

Proof. (a) Lemmas 14.2 and 14.10 yield
L(G) S L(G]0,(G) +1 <7,(G/0,(G)) +1<2-8,(G) + 1.

(b) Analogous. O

14.12 Remarks. Let G be solvable and p be prime.
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(a) There even exist logarithmic estimate for /,(G) in terms of r,(G), as
first'shown by Huppert [Hu 1]. The following improvement can be found in
[Wo 5): |

(1) L(G) <2+41log,(rp(G)/(p + 1)) where s =p — 14 1/p; and

(2) 1(G) < 1+1og,(r,(C)) if p ¢ 5.

(b) Combining (a) and Lemma 14.10 together, we also get the appropriate
logarithmic estimates for [,(G) in terms of €,(G).

(c) Observe that the proof of Lemma 14.10 works exactly the same way
for e,(G) instead of &,(G). Hence if O,(G) = 1, then

mp(G) < 2 e,(G).

(d) Therefore, (c) together witlll(a) yield logarithmic bounds for I,(G)
in terms of e,(G). Note that these considerably improve the linear bounds

obtained in Corollary 14.8 (a). We mention in this context that the assertion
of Theorem 14.3 is best possible (cf. [HB, IX, 5.4]).

As announced, we next bound dI(P/0,(G)) in terms of &,(G), where
P € Syl,(G). To do so, we take advantage of- Theorem 14.11.

14.13 Lemma. Let G be p-nilpotent, P €.Syl,(G) and O,(G) = 1. Then
dl(P) £ 2,(G).

Proof. Set N = 0,(G). As O,(G) =1, it follows that Cp(N) = 1. By
Lemma 12.2, P faithfully permutes the elements of Irr (V) and IBr,(N). Let
Q, ..., 8, CIBry(N) be the P-orbits of IBr,(NV), set |€2;| = pfi and assume
without loss of generality that fi > --- > f,. Then P < Spnn X oo X Sy
As a Sylow p-subgroup of S,s has derived length f (see [Hu, III, 15.3]), we
have that dl (P) < f;. On the other hand, if € Q;, then p/t I (1) for all
¢ € IBrp(G|6). Therefore

dI(P) < f, < &,(G). 0

Ul s [N T TS R ) R TIPS SO I B N P I KU Y Y PO X PN N [R{A)

14.14 Theorem (Wang [Wa 1]). Let G be solvable and P € Syl,(G).
Then
dL(P/0,(G)) < 1p(G/O4(G)) - &(G).

Proof. We may assume that O,(G) =1 and argue by induction on [,(G).
Write N = O0,(G) and M = O, ,(G). Then M is p-nilpotent with
O0,(M) = 1, and Lemma 14.13 yields dl(M/N) < &,(M) < &,(G). By

induction, we also have that
dl(PM/M) < I,(G/M) - &,(G/M) < (1,(G) — 1) - &,(G).
Consequently,
, dI(P) S dI(PM/M)+dI(M/N) < ,(G) - g,(G),

as required. - " O

Putting together Theorem 14.14 and Lemmas 14.2 and 14.10, we obtain
the next corollary. This result can be improved somewhat if Remark 14.12

(a) is used in place of Lemma 14.2.

14.15 Corollary. Let G be solvable and P € Syl,(G). Then
(a) dI(P/Ou(G)) < 2-&,(G)?; and

(b) dl(P/O,(G)) < &,(G)?* provided that |G| is odd or p ¢ {2} UM.

’

We finisli this section with a result about e,(P) for P € Syl,(G). Note
that e,(F) is the exponent of the largest character degree of P. The following

actually is a consequence of Theorem 7.3.

14.16 Corollary (Espuelas [Es 1]). Let G be solvable, p an odd prime
and P € Syl,(G). If p™ is the p-part of |G/Op ,(G)|, then e,(P) > n.

Proof. It is clearly no loss to assume that 0,(G) = 1. Therefore, F(G) =
0,(G), and V := O0,(G)/¥(G) is a faithful G/O,(G)-module of charac-
teristic p. Also Irr (V) is a faithful G/O,(G)-module by Proposition 12.1,

—
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and since p # 2, there exists A € Irr (V) such that Cp()) = 0,(G), by

Theorem 7.3. Consequently, p" | ¢(1) for all ¢ € Irr (P]A), and e,(P) > n
follows. u

For this section, the reader might also consult [MW 2] and [Wa 1]. We
also note that Isaacs [Is 1] first derived Corollary 14.7 (a) in the case N = 1.

§15 McKay’s Conjecture

Recall that k(B) = |B N Irr (G)| for a p-block B of G. We let ko(B) =
[{x € Irr (B)] x has height zero }| and k¢(G) = |{x € Irr (G) lp}{,\/(l)}|.

If P € Syl,(G), the McKay conjecture states that ko(G) = ko(Ng(P)).
Actually the original conjecture was only for p = 2 and G simple. The
Alperin-McKay conjecture, a refinement of this conjecture, states that ko(B)
= ko(b) where b is the Brauer correspondent of B (i.e. b is a block of NG(D)
for a defect group D of B and b = 0%). Certaiuly, the Alperin-McKay con-
jecture implies the McKay conjecture. For p-solvable G, a slight strength-
ening of the McKay conjecture together with Fong reduction (see Chaptef

0) implies the Alperin-McKay conjecture Theorem 15.12.

Isaacs [Is 1] first proved the McIay conjecture for groups of odd order.
Wolf [Wo 1] extended this to solvable G, relying heavily on work of Dade
[Da 1]. The work of Isaacs and Dade involves deep analysis of solvable
groups with fully ramified sections (see Proposition 12.3). Dade [Da 2]
announced a proof for p-solvable, albeit long and complicated. In [OW 2],
Okuyama and Wajima gave a short proof for p-solvable G, even simplifying
the proof for solvable G. The proof uses the Glauberman correspondence
and a counting argument disenssed in the next paragraphs. Unlike Dade’s

proof, no correspondence is given.

Suppose N < G and 6 € Trr (N) is G-invariant. A result of Gallagher
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states that k(G|8) equals the number of “6-good” conjugacy classes of G/N

(see the next two paragraphs). This appears as Exercise 11.10 of [Is]. An

equivalent count, due to Schur [Sc 1], involves twisted group algebras. A
modular version of Schur’s result appears in [AOT]. Isaacs [Is 8] translated
this to Brauer characters and showed this works even for “x-Brauer” char-
acters. We will give a proof of this counting argument for Brauer characters.
Of course, this leads to questions as to whether McI{ay’s conjecture holds
for Brauer characters. The answer is yes for solvable, even p-solvable G, hut
not arbitrary G. These questions have been studied extensively in [Wo 7]

and are discussed below in Section 23.

Suppose N 4 G and ¢ € IBr,(N) is G-invariant. Let ¢ € G and choose
B € IBr,((N, g)) such that B extends ¢ (see Proposition 0.11). We say that

g is p-good if B* = f whenever [z,9] € N, i.e. if B is invariant in C' where

- C/N = Cgn(g). If A, € IBr, ((N,g)) also extends ¢, then f; = Af for a

unique linear A € IBr, ({N,¢)/N) by Lemma 0.9. Since (N,g)/N is central
in C/N, ) is C-invariant and Ic(f1) = Ic(f). Hence, the definition for ¢ to
be ¢-good is independent of the choice of extension § € IBr, ((NV,g)) of ¢.

It is clear from the definition that ¢ is ¢-good if and only if ng is -good
whenever n € N. For convenience, we also refer to Ng € G/N as being
-good. Furthermore, for y € G, it is easy to see that g is w-good if and
only if g¥ is ¢-good. Consequently, we will refer to ¢-good conjugacy classes
of G/N. Recall G° is the set of p-regular elements of G and that f*(G) is

set of class functions on G,

15.1 Lemma. Suppose that N Q G and ¢ € IBr,(N) is G-invariant. Then
there exists a right transveral T for N in G and o : G° — C such that1 € T
and
(1) If Nt is p-regular, then t is p-regular;
(ii) o(t) =1 whenever t € T is p-regular;
(iii) If 9 € cf°(Glyp) and g € G is ‘;)-regu]zu', then 1¥(g) = o(g)(t) where
teNgnT.

-

Note: While o 1s dependent upon T and , it is indepenclent of the choice
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of 4. Of course, o need not be a class function.

Proof. Whenever Nz is a pregular element of G/N, then Nz contains a
p-regular element of G. Observe that in order to prove (iii), it suffices to
prove that (g) = o(g)n(t) whenever n € IBr, ((N,g)]e). Thus it involves
no loss of generality to assume that G/N = (Ng) is a cyclic p'-group and g is
p-regular. We then choose t € NgNT, define o on (Ng)® and show that (i),
(i1), and (iii) hold. For the coset N, we let 1 € T and set o(n) = ¢(n)/e(1).
Without loss of generality, G > N. Let 6 € Irr(G) extend ¢.

If § vanishes on every p-regular clement of N ¢ (this does not actually
happen, as we shall see in the next corollary), we let ¢ be any p-regular
element of Ng and define o(g) = 1. Certainly 8(g) = o(g)8(¢) in this case.
Otherwise, we choose t € Ng so that ¢ is p-regular and 6(t) # 0. We let

o(g) = 0(g9)/6(¢). In all cases, 0(g) = o(g)0(2).

Now let 4 € IBr,(Glp). Since G/N is cyclic, ¢ = f8 for a linear § €
IBr,(G/N). Now $(g) = A(9)6(5) = B(£)o(9)8(t) = o(a)(t), as desired.

This proves the lemma. O

Of course, the value o(g) is dependent upon the choice of t € Ng N T.
But it is not dependent upon the choice of the extension § € IBr,(Gly).

This is clear from the last paragraph.

15.2 Corollary. Assume the notation of Lemma 15.1. Then

(i) Forn € N, o(n) = ¢(n)/e(1);
(ii) If Ng = Nt with g and t p-regular and t € T, then o(g) = p(g)/p(t)
for every extension p € IBr,((N,g)) of ¢. In particular w(t) #0.

Proof. Part (i) is immediate from Lemma 15.1 (iii) and the fact that 1 € T.
By Lemma 15.1, we have that ¢(z) = o(z)y(s) whenever z € G is p-regular,
s €T,z € Ns, and ¥ € cf°(G|p). To complete the proof, we may fix a
p—reg\ilar element £ € T and p € IBr,((N,t)lp). 1t suffices to show p(t) # 0.
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We may assume without loss of gene'rality that G = (N, 1), so that G/N

"is a cyclic p’-group. Assume that p(t) = 0. By Proposition 0.11 and Lemma

0.9, 7(t) = 0 for all 7 € IBr,(Glp). Hence n(t) = 0 for all € cf*(G|y).
Now restriction 5 i- 17 defines a vector space homomorphism from c¢f®(G|g)
into the vector space X of complex-valued functions on 7. This is not
onto, because n(t) = 0 for all n € cf°(Gle). We do claim this map is 1-
1. Assume that 87 = 0 for some g € ch(Gkigo). If 2 € G is p-regular,
then B(z) = o(z)B(s) for some s € T and f(z) = 0. Thus'f = 0 and
the restriction map is 1-1. Hence |G/N| = |IBr,(Glp)| = dim(cf(Glp)) <

dim(X) = |T| = |G/N|. By this contradiction, u(t) # 0, as desired. o -

15.3 Theorem. Let G, N, p, T and o be as in Lemma 15.1. Let
X € cf’(G). The following. are cquivalent:
(i) x € f(Glp); and
(ii) Whenever ¢ € Nt fort € T and g is p-regular, then x(g) = o(g)x(t).

Proof. By Lemma 15.1, (i) implies (ii). Assume (i1). Let n € N be
p-regular. Since 1 € T, we have that x(n) = o(n)x(1). By Corollary
182, o(n) = ¢(w)/p(1) and s0 x(n) = ((1)/(1)) $(n). Hence xn =
[x(1)/¢(1))p, as desired. O

15.4 Lemma. Suppose that N < G and ¢ € IBry(N) is G-invariant. If
g € G is p-regular and Ng is not p-good, then ¢(g) = 0 for all ¢ € cf*(Glp).

Proof. Since Ng is not @-good, there exists p € IBr,((N,g)|e) that is
" not invariant in C, where C/N = Cg n(Ng). Without loss of generality

G = C. Set Z = (N,g) so that Z/N < Z(G/N). We may further assume
that ¢ € IBr,(Glp). Since p € IBrp(Z) is not G-invariant and Z/N <

Z(G/N), no extension of ¢ to Z is G-invariant. Thus we may assume that

Y € IBr,(G|u).

For z € G, p* = Ay for a unique linear A; € IBr,(Z/N). Because
ZIN < Z(G/N), Agypt = ¥ = (App)? = A Aypeand Ay = A A, Thus the

—
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G-orbit of pis {Au , A € K} for some subgroup K < IBr,(Z/N). Because
4 is not G-invariant, K # 1. Because K is a subgroup of the group of linear
characters IBrp(Z/N) = Irr (Z/N), then K = Irr (Z/M) for some subgroup
N <M < Z (e.g. see [Hu, V, 6.4]). Thus 5 is a multiple of pz/asp, where
Pzsm is the regular character of Z/M. Because N < M < Z = (N,g) we
have that $(9) = pz/a(g)pe(g) = 0. | 0

The second paragraph of the above proof repeats an argument in Lemma
12.6. That lemma could be used here at least for ordinary characters as it is

possible to reduce to the case where G/N is abelian (ie. G = (N,g,z) with

- [z,9] € N and p* # p).

15.5 Proposition. Assume the notation of Lemma 15.1. Let g € G and
t € T be p-regular with Ng = Nt. Then

(1) a(9%) = o(g)a(t®) for z € G. '

(i) Ift is p-good and if nt and mt are G-conjugate and p-regular with
n, m € N, then o(nt) = a(mt).

Proof. (i) Now ¢*, ¢ € Ns for a unique s € 7. Also s is p-regular. Let

fr € IBry({N,%)) be an extension of ., Then j* is an extension of @ to

(N,s) = (N, t)*. Applying Corollary 15.2 thrice,

#*(9%) = wlg) = o(g)n(t),
pH(t%) = o(t*)p*(s), and

HH(g*) = o (g)u*(s).

v

Consequently, o(g%)p*(s) = U(g);t(t) =o(g)p*(t*) = J(g)a(tz);tz(s). Since
1*(s) # 0 (again Corollary 15.2), part (i) follows.

(ii) Choose h € G with (nt)* = mt. Then & and ¢ commuke mod N.
Because t is (-good, p must be (h)-invariant. Now u(nt) = uh((nt)") =
ph(mt) = p(mt). Applying Corollary 15.2 (ii),

{

o(nt) = p(nt)/u(t) = /.L(?Tlt)//l.(-t) = g(mt). O
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15.6 Theorem. Let N < G and ¢ € IBr,(N) be G-invariant. Then
|IBr,(Glw)| equals the number of p-good conjugacy classes of p-regular ele-
ments of G/N.

Proof. Choose a transveral T for N in G with T as in Lemma 15.1. Now
choose a subset S C T such that

(i) Each s € S is p-regular.
(ii) Bach s € S is p-good.

(ii1) If Ngis p-regular and p-good, then Vg is conjugate to (exactly) one
Ns,s€S. ‘

Consequently |S| equals the number of ¢-good conjugacy classes of p-regular
elements of G/N. Because IBr,(G) is a basis for the C-vector space cf’(G),
indeed IBr,(G|yp) is a basis for c¢f®(G|p) and |IBr,(Gle)| = dim(cf(G|e)).
IV =/{f:5— C}, then dim(V) = |S|. Consequently, it suffices to show .
that the restriction ¥ +— g is an isomorphism from IBr,(G|p) onto V. )

Trivially it is a homomorphism.

Suppose that 8 € cf?(G|p) and s = 0. We wish to show that #(g) = 0
for all p-regular ¢ € G. By Lemma 15.4, we may assume that ¢ is (p-good.
By (iii) above, we may assume that g = ns for some s € S. By Theorem
15.3, B(g) = o(¢9)B(s) = 0. Hence § = 0 and the restriction map ¥ + 15 is

one-to-one.

Now let « : § — C. To complete the proof, we must show that there
exists x € cf’(Glp) with xs = a. We define x as follows. Fix ¢ € G p-
regular. If z is not -good, we let x(z) = 0. If z is p-good, there is a unique
s € S such that z is conjugate to ns for some n € N (by (iii) above). In
this case, we let x(z) = a(ﬁs)a(s) where o is as in Lemma 15.1. If z is
also conjugate to ms with m € N, then Proposition 15.5 (ii) implies that
o(ns) = o(ms), because s is p-good. Hence x is well-defined. For s € .5,
o(s) =1 by Lemma 15.1 (ii) and so x(s) =1 - a{s). Thus xs = a.

Suppose y € G is conjugate to x. Either both x and y are p-good or both



are not. In the latter case, x(z) = 0 = x(y). In the former case, both z
and y are conjugate to some ns with n € N, s € S. Then x(z) = x(y) by
definition of x. So x € ¢f’(G). What needs to be shown is that x € cf®(Gy).

Fix ¢ € G pregular and ¢t € T with ¢ € Nt. By Theorem 15.3, it
suffices to show that x(g) = o(g)x(¢). If ¢ is not w-good, neither is ¢ and
. x(g) = 0 = x(t) in this case. We thus assume that g is @-good and choose
z-€ G, s € S such that ¢* € Ns. Note that t* € Ns. By definition of
X, x(9) = a(gr)a(s) and x(t) = o(t*)a(s). By Proposition 15.5, o(g%) =
a(g)o(t*). Thus x(g) = o(g)a(t*)a(s) = o(g)x(t), as desired. O

Let N 9 G and § € Irr (V). Then welet k(G|6) = |Irr (G|8)] and of course
k(G) = |Irr (G)|. Finally, we let ko(G|8) = |{x € Irr (G|6) | pt x(1)/6(1)}].

15.7 Corollary. Suppose that G/N is abelian and 6 € Irr (N). Then §
extends to G if and only if k(G|0) = |G/N|.

Proof. If Ig(8) < G, then 8 does not extend to G and
k(G10) = k(I5(0) | 8) < k(16(6)/N) < |G/N|.

So we assume 6 to be G-invariant. Now Lemma 12.6 shows there exists
N < M < G such that each 7 € Irr (M|6) extends 8 and is fully ramified
with respect to G/M. Each x € Irr (G|6) has degree |G : M|'/2 . §(1) and
k(G|0) = [M : N|. Thus 6 extends to G if and only if M = G, or equivalently
HGI6) = |G/N]. 0

15.8 Lemma. Suppose that M, K 4 G with K and G/M p'-groups and
M/K a p-group. Assume that G/M is abelian. Let P € Syl,(G) and set
C = Cg(P). If 6 € Irr (I) and B = 0p(K, P).€ Irr(C) is the Glauberman
correspondent of 6, then 9 extends to G if and only if f extends to Ng(P).

Proof. We argue by induction on |G : IX||P|. If P = 1, then C = K and
B = 6. Thus we may assume that M > K.

Set H = Ng(P). Observe that M = KP, G = KH and K NH =C.
Also G/K =2 H/C and MNH =C x P. Let V € Hally(H). Then C <V
and VK/IK € Hall,(G/K). Since p { ||, 6 extends to M (see Theorem
0.13). By Proposition 0.12; 8 extends to G if and only if 8 extends to V.
Similarly, 8 extends to H if and only if § extends to V.

Let S/ be a minimal normal subgroup of G/K with S < M. Let Q =
SNP = S/K and D = C(Q). By Theorem 0.15, 0p(K, Q)p(D, P/Q) = B.
If S < M, we apply the inductive hypothesis twice to conclude that 6
extends to SV if and only if 0p(K, Q) extends to DQV if and only if
extends to QV. By the last paragraph, 6 extends to G if and ouly if j3
extends to H. We may thus assume S = M, 1.e. M/I{ is a minimal normal
subgroup of G/IK. In particular, M/K is an elementary abelian p-group

and an irreducible G/M-module.

Assume that I{ = O,(G). Then M/K is a faithful irreducible G /M-
module. Since G/M is abelian, in fact G/M is cyclic by Lemma 0.5. Since
V/C =2 VKK = G/M, we have that § extends to VI{ and 8 extends to
V by Proposition 0.11. By the second paragraph, 8 extends to G and g
extends to H. We are done in this case. Letting. N = O,(G), we thus
assume that N > If.

Now N/K = 0,/(G/K) and is centralized by P. Also NNH = O, (H) =
Cu(P)=Cpn(P)and NNH/C = N/I. Because P centralizes N/I, every
v € Irr(N|6) is P-invariant by Lemma 0.17, and p(N, P) maps Irr (V]6)
onto Irr (N N H|fB), by Lemma 0.16. Since p(N,P) is 1-1, |Irr (N|8)| =
[Irr (NN H|B)|. We may assume that § extends to H or  extends to NN H,
since the theorem is trivially true otherwise. Since N/ Z NNH/C < G/M

and is abelian, it follows that
IN/K| = |Irr(N|0)| = |Ier (NN H | f)| = |[N 0 H/C|.

Now Corollary 15.7 implies that both ¢ extends to N and B extends to

NN H. Since N/I is abelian, we can apply the inductive hypothesis to

ey
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G/N to conclude that
6 extends to G <= some o € Irr(N|0) extends to G
<= some 7 € Irr(N N H|B) extends to H
+= f extends to H. O

We now put the main ingredients, Theorem 15.6 and Lemma 15.8-, to-
gether to get McKay’s conjecture for p-solvable groups. While Theorem 15.9
(iv) is not the most general statement, it can be used with routine _argu-
ments to deduce Theorem 15.10 and it can be used with Fong reduction to
prove the Alperin-McKay conjecture for p-solvable groups. The hypothesis
in Theorem 15.9 that ¢ extends to P is met if ko(Glw) # 0 or ko(H|ip) # 0.

15.9 Theorem. Suppose that L < I <SMSGwithL, K, M 94 G and
@ € Irr (L) is G-invariant. Assume I{/L and G/M are p'-groups and M[K

is a p-group. Let P/L € Syl,(G/L), C/L = CA/L(P) and assume that @
extends to P. Then

(i) There is a bijection from {8 € Trr (I(|y) | 6 is P-invariant } onto
Irr (Cli) given by 6 «— B if and only if [0, ] % 0 (mod p).

(i) The map in (i) is preserved by conjugation by H := Ng(P).

(iii) Assume that M < A < G with A/M abelian. If § «—— f is as in
part (1), then 8 exten@s to A if and only if B extends to H N A.

(iv) ko(G|0) = ko(H|B) whenever 6 € Irr (K |0) is P-invariant and
0 —— B € Irir(C).

(v) If, in addition, p { ¢(1)o(y), then also p | o(8)8(1)o(£)B(1). In par-
ticular § and B have canonical extensions € Irr (M) and f € Irr (CP). If
X € Irr (M/K) is linear, then k(GIM) = k(H[Acpf).

N
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Proof. Since H — Ng(P) and M =KP < @G, the Frattini argument shows
that G = KH and ¢ = HN K. Also G/K = H/C. If 6 € Trr (K|p) is P-
invariant and h € H, then 8" is also P-invariant and (6")¢ = (6¢)". Part
(ii) follows from part (i).

(iii) = (v) For convenience (which should become apparent further along
in the proof), we next show that (iii) = (v). Since p { ¢(1), clearly,
p 1 0(1)B(1) because K/L is a p’-group. Now 6 = ep for a p'-integer €.
and so det(6p) = (det¢)® has p'-order. Since K/L is a p’-group, o(f) is
p'. Likewise, p { o(8). By Theorem 0.13, we let § and 3 be the canonical
extensions of # to M and § to CP.

We have A € Irr (M/ ) is linear and we let J = IG()\é) > M. Since A\
extends 8, we have that I¢(M) < Ig(8) = Ig(8). So J = Ig(8) N Ia()).
Similarly, In(Acpf) = In(Aep)NIu(B) = In(Acp)NIy(0). Hence JNH =
Ig(AcpB). Also M(JNH) =J and J/M & J N H/CP. We need to show
that k(J|\) = k(JNH[AcpfB). To this end, it suffices to show that j € JNH
is Acpf-good if and only if j is a /\é-good element of J. Note that j is \-
good if and only if A extends to (M, ],z) whenever z € J and [j,z] € M.
It suffices to show that whenever M < A < J with A/M abelian, then A§
extends to 4 if and only if Acpf extends to AN H.

Suppose then A0 extends to A. In particular, 8 extends to A and part
(ii1) implies that § extends to é € Icr(H N A). Now écp = af} for an
AN H-invariant and linear « € Irr (CP/C). Since a, Agp € Irr (CP/C)
are invariant in A N H and since (|4 N H/CP|, |CP/C]|) = 1, both «
and Acp extend to AN H. Say ai, A1 € Irr(AN H) extend « and Acp
(respectively). Then Ajaj'¢ € Irr (AN H) extending AcpB. So we have
shown that Acpf extends to AN H whenever A§ extends. The proof of the

converse is essentially 1dentical. So (iii) implies (v).

(1), (iii), (iv). Since ¢ is G-invariant, it is no loss of generality to assume
that ¢ is linear, via use of a character triple isomorphism (see [Is, Theorem

11.28]). Now ¢ = ao, for linear «, ¢ € Irr (L) with o(a) a p'-number and
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o(c) a p-power. Since ¢ extends to P and ¢ is lineﬁr, o also extends to P.
By Proposition 0.12, o extends to y € Irr (G). For L < J < @, the mapping
Tyl risal-l degree-preserving map Irr (Jy) onto Irr (J|a). Thus it
1s without loss of generality to assume that ¢ = «, i.e. that ¢ is linear and
pto(p). We may also assume that ¢ is faithful, so that now L and K are
p'-groups. We now employ the Glauberman correspondence (Theorem 0.15)

to prove (i) and Lemma 15.8 to prove (iii).

Since we now have that p{ |I{|, we have canonical extensions 8 € It (M)
of 8 and f € Irr (CP) of B. Repeating the argument of (i) = (v), we
have that k(G|A\8) = k(H|Acpf) for all linear A" € Irr (]\/I/I&;). We may
choose linear Ay, ..., Ay € Irr (M/K) so that each linear character of M/IC
is H-conjugate to exactly one A;, 1 <1 < k. Since G = KX H, we have that

{x € Irr (G|6) , ptx(1)} =Irr (GIA ) U--- U Irr (G)A8).
Now restriction gives a bijection from Irr (A/K) onto Irr (CP/C) and each

linear character of CP/C is H-conjugate to exactly one (A)ep, 1 <t < k.
So ,

(v € Ir (HIB) | p{ (1)} = Irx (HI(M)opB) OO Ter (H|(Aw) opd).
Since k(G|Aif) = k(H|(\:)opf) for each 5, ko(G|6) = ko( H|B). O
15.10 Theorem. Suppose that G/L is p-solvable and ¢ € Irr (L) is P-

invariant where P/L € Syl,(G/L). Set H/L = Ng;1,(P/L). Then ko(G|y)
= ko(Hlp).

Proof. By induction on |G : L|. The result is trivially true if P < G.
Without loss of generality, H < G.

Let I = Ig(p). Then P < HNI < I. Since |G:I||H : HNI|isa -

p'-number, ‘the Clifford correspondence yields that ko(Gly) = ko(I|p) and
ko(Hlp) = ko(H N Ijp). But HNT/L = Ny/(P/L). It I < G, the inductive
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hypothesis impilies that ko(I]p) = ko(H N I|p). Then ko(Glp) = ko(H|p),
as desired. We thus assume that Ig(p) = G. '

We next let I{/L be a chief factor of G and set J = Ng(I{P/I{). Suppose
that 8, u € Irr (K |¢) are P-invariant. We claini that § and p are G-conjugate
if and only if they are J-conjugate. Indeed, assume that 8 = u? for some
g € G. Then P/L, P9/L € Syl,(Ig(8)/L) and so P9 = P* for some i €
fg(H). Then ig™! € Ng(P) < J and gis" =9 = . The claim follows.
Further note that if «, 8 € Irr (K|¢) are J-conjugate, then « is P-invariant
if and only if § is P-invariant.

Now we may choose 8y, ..., 8, € Irr (K{|p) such that each §; is P-invariant
and such that each P-invariant p € Irr (I|g) is j—conjugnto to exactly
one ;. Furthermore, we may assume there exists 0 < k < ¢ such that
p 1 8j(1)/e(1) if and only if ; < k. If x € Irr (Glp) and p t x(1)/¢(1),
it follows from the last paragraph that x € Irr (G|6;) for a unique j < k.
Similarly, if ¢ € Irr (J|¢) and p { ¥(1)/¢(1), then ¢ € Irr (J]6;) for a unique
i < k. The inductive hypothesis yields that ko(G|6;) = ko(J|8;) for all
7 < k. Hence ko(Glp) = ko(Jlp). If J < G, the inductive hypothesis
implies that ko(J|p) = ko(H|p) and hence ko(Glp) = ko(H|p). We may

thus assume J = G, i.e. G/K has a normal Sylow p-subgroup.

We may assume that ko(G|p) # 0 or ko(H|p) # 0. In either case, there
exist P < N < G and n € Irr (Nlp) such that p { (1)/¢(1). Since ¢ is
G-invariant, there exists o € Irr (Plg) with [np,a # 0 and p { a(1)/p(1).
Since P/K is a p-group, ¢ extends to a € Irr(P).

If K/L is ap-group, then G /L has a normal Sylow p-subgroup and H =
G, a contradiction. Thus K/L is a p'-group. In par:ticular, k=t ie p{
6:(1)/p(1) for all 7, 1 <7 < ¢t. We have that each P-invariant g € Irr (K|¢)
is G-conjugate to exactly one §; (1 < ¢ <t). The Frattini argument shows
that G = KH and so each P-invariant u € Irr (I{|p) is H-conjugate to
exactly one 6;. Let C = I N H and note that C/L = Cy,(P). By

Theorem 15.9 (i), there exist fy,..., B¢ € Irr (Clyp) such that [(6;)¢, Bi] # 0

iy

|
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(mod p) and each 7 € Irr(Clyp) is H-conjugate to exactly one §; (note
that Lemma 0.17 shows that every 7 € Irr (Clp) is P-invariant). If x €
Irr (Glp) and p 1 x(1), then x € Irr (G|6;) for a unique j (see above). Thus
ko(Glp) = Siey ko(Gl8:) and ko(H|p) = i, ko(H|B:). Since ¢ extends
to P, then ko(G|0;) = ko(H|B;) for all ¢ by Theorem 15.9 (iv). Hence
ko(Glw) = ko(H|p). , .0

Applying Theorem 15.10 with L = 1, we immediately get McKay’s con-
jecture for p-solvable groups.

15.11 Corollary. If G is p-solvable'and P € Syl,(G), then ko(G) =
ko(Ng(P)).

Next, we deduce the more refined Alperin-McKay conjecture for p-solva-

ble G.

15.12 Theorem. Let B be a p-block of a p-solvable group G. Let D be a

defect group of B and let b € bl(Ng(D)) be the Brauer correspondent of B.
Then ko(B) = ko(b).

Proof. Argue by induction on |G : O,(G)|. Let K = O, (G). We may
choose ¢ € Irr (K) covered by B so that D < I := Ig(yp) (see Proposition

0.22 and Lemma 0.25). Applying Corollary 0.30 and Lemma 0.25, there exist -

blocks By of I and b of INNg(D) such that ko(B) = ko(By), ko(b) = ko(bo),
and by is the Brauer correspondent of By. If I < G, the inductive hypothesis
implies that ko(Bo) = ko(bo). Then ko(B) = ko(b), as desired. Tlius we
assume that ¢ is G-invariant.

By Theorem 0.28, D € Syl,(G) and B is the unique p-block covering {¢}.
Let p = @p(I{,D) € Irr (Ck (D)) be the Glauberman correspondent of ¢.
By Theorem 0.29, b is the unique p-block of Ng(D) covering {u}. ‘Thus
ko(B) = ko(Glp) and ko(b) = ko(Ng(D)|p), as D € Syl,(G). By Theorem
15.10, ko(G|p) = ko(IXNg(D)|ep). By Theorem 15.9 (iv), ko(KNg(D)ly) =
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ko(Ng(D)|w). Hence ko(B) = ko(d). , O

We remark that both the McIay conjecture and Alperin-McKay con-
jecture remain open for arbitrary G. They have been verified for certain
families of groups. But unlike some conjectures, there is no known method

to reduce these questions to simple groups.

We let I(G) = |IBrp(G)| and Io(G) = |{¢ € IBry(G) l pt (1)} In
light of the above results, one might ask whether lo(G) = lo(Ng(P)) when
Pc §ylp(G) While this is not true for arbitrary Gj it is true for p-solvable
G and we give a proof below in Section 23 and we will discuss there a number

of related questions.



Chapter V
COMPLEXITY OF CHARACTER DEGREES

§16  Derived Length and the Number of Character Degrees

We let cd(G)={x(1)|x €Irr (G)}. I. M. Isaacs proved that if [cd(G)|<3,
then G is solvable and dI(G) < [cd(G)| (see [Is, 12.6 and 12.15]). Since
led (A5)] = 4, we cannot improve the first conclusion, but it has been con-
jectured by G. Seitz that dl(G) < |ed (G)] for all solvable groups G. Isaacs
gave the first general bound, namely dl(G) < 3-ed (G)] (or 2 |ed (G)] if |G|
is odd). These are proved in Theorem 16.5 below. Lemma 16.4 is impor-
tant here and further analysis allows us to present Gluck’s improvement to
dI(G) <2-|cd(G)| in Theorem 16.8. Using Theorem 8.4, we give Berger’s
proof of Seitz’s conjecture for groups of odd order. The .key result here is
Theorem 16.6, which does not hold for arbitrary solvable groups.

The first proposition ‘ifgquite important to this section. For y € Irr (G),
we let D(x) = ({ker(¢) | P € Iir(G) and %(1) < x(1)}. Should yx be
linear, then D(x) = G.

16.1 Proposition. Let x € Irr (G) and write x = ¢ for some H < G and

6 € Irr (H). Then D(x) <D(0) < H.

Proof. Note that when ¥ is linear, then x =6 and H =G = D(x). If ¢ €
Irr (H) and 9(1) < 6(1), then $9(1) < 89(1) = x(1) and every irreducible
constituent of 1 has degree less than x(1). Thus D(x) < ker(y) <
ker(y) < H. Hence D(x) < D(8), except possibly when @ is linear and
H < G. But in this case, observe that 15°(1) = 89(1) = x(1) and 14°
reduces. Thus D(x) < ker(1y%) < H = D(6). O

s afee b b e U Bt UM LEAL LY 2l

We introduce a little more notation. For solvable groups G, we let 1 =
fi < fa < -+ < fi be the [ distinct character degrees of G. We let D;(G) =
N{ker(x) | x € Irr(G) and x(1) < fi}. Thus Dy(G) = G, Di(G) = G' and
D(x) = Di—(Q) should x(1) =.fi.

A group G is called an M-group if each x € Irr (G) is induced from a linear
character of a subgroup of G. Taketa proved that M-groups are solvable, in
fact dI(G) < [cd(G)] (see [Is, 5.12 and 5.13]). The strategy of this section
is not dissimilar to, although more complicated than, the proof of Taketa'’s
Theorem (as given in [Is]). To show that dI(G) < |cd (G)| for an M-group
G, it suffices to prove that D(x)" < ker(x) for all x € Irr (G). Write x = G
for a linear A € Irr(H) and H < G, then D(x) < H by Proposition 16.1,

and D(x)' < szG(H')I < ﬂxec(ker()\))x = ker(x).

16.2 Proposition. Let G be solvable and let V be a completely reducible
faithful G-module over possibly different finite fields. Theu G las a faith-
ful complex character ¢ with ¥(1) < dim(V). (Here, dim(V') denotes the
number of free generators of V'.) Furthermore, it may be arranged that 1 is

irreducible if and only if V' is irreducible.

Proof. We argue by induction on dim(V). If V = V; @ V, for proper
G-submodules V;, the inductive hypothesis implies the existence of 1; €
Char (G) with ker(;) = Cg(Vi) and 9;(1) < dim(V;). Let ¢ = by + 3o,
so that ker() = Cg(V3) N Cg(Va) =1 and %(1) < dim(V). We may thus
assume that V is irreducible over a field F. Let K be an algebraically closed
extension field of 7. Then V@ X = V@ - - @V, for distinct absolutely irre-
ducible G-modules V; that are Galois-conjugate by Proposition.0.4. Since V
is faithful and the V; are Galois-conjugate, V] is.a faithful G-module. By the
Fong-Swan Theorem (see Corollary 0.33), there exists ¥ € Irr (G) faithful
with 1h(1) = dimx(V3). Then $(1) < dimg(V ®x K) = dim#(V). 0

If V above has characteristic p, the proposition is still valid for p-solvable
G. Note that if p is the smallest prime divisor of V], then 1(1) < log,(|V]).

e
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16.3 Corollary. Suppose x € Irr (G) is faithful and primitive and G is
solvable. Set F = F(G) and T = Z(F). Then

(a) T = Z(G) is cyclic;

(b) F/T = Ey/T x -+ x E,,/T where each E;/T is an irreducible sym-

plectic G-module;
(c) G/F acts faithfully on F/T;
(&) IF/T] | x(1)% and
(e) F/T has a complement in G/T.

Proof. If B & G is abelian, then xp = e f for a faithful g € Irr (B)
and integer e, because y is faithful and primitive. Consequently B is cyclic.
Since B is G-invariant, linear and faithful, B < Z(G) (this uses that C is
algebraically closed!). Thus every normal abelian subgroup of G is cyclic

and central. The assertions now follow from Corollary 1.10, Corollary 2.6

and Lemma 1.11. 0

16.4 Lemma. Suppose that x € Irr (G) is a faithful primitive character of a
solvable group G. Set F = F(G), T = Z(F) = Z(G) and K/F = O4(G/F).
Assume that D(x) £ F. Then

(a) there exists p € Irr (G/F) faithful with p(1) = x(1);

(b) K/F =F(G/F) is abelian and x(1) | |G/K|;

(¢) D(x) < K and D()" = ;

(d) x(1) = |F: T|*/? is 2 or 2%;

(e) F/T is a faithful irreducible G/F-module; and

(f) G/T has a faithful irreducible character w with x(1) < w(1) <
(3/2) - x(1). '

Proof. Since y is faithful and primitivé, Coro!lary‘ 16.3 applies. Since
D(x) £ F, we have that F' < G and hence T < F (see Corollary 16.3
(c)). Proposition 16.2 implies that there exists a faithful p € Char (G/F)
satisfying p(1) < rank(F/T). Set e = |F : T|"/? ¢ Z and let p be
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i
the smallest prime divisor of e.. Then p(1) < rank (F/T) < log,(e?).
Since ker(p) = F £ D(x), some irreducible constituent £ of p satisfies
p(1) > £(1) > x(1). Now x(1) = et for an integer ¢ (see Corollary 16.3 (@)).
Thus .
_ 2-log,(e) > p(1) 2 £(1) 2 x(1) = et.

Then e? > p' > 2°. Since p | e, this can only occur when p=2,¢ =1, and -
e is 2 or 22, Hence, p(1) = £(1) = x(1) = e and p is irreducible. It follows
from Corollary 16.3 and the supplement of Proposition 16.2 that F/T is a
faithful irreducible G/F-module. Since T' = Z(G) and F/T is a 2-group,
0,(G/F) =1 and so F(G/F) < K/F. Since p € Irr (G/F) is faithful of
degree 2 or 22\, PK/F 15 faithful and all irreducible constituents of PK/F are
linear. Hence I{/F is abelian and IK/F = F(G/F). By lto’s Theorem [6.15
of Is], p(1) | |G/K| and therefore x(1) | |G/I|. We have proven conclusions
(#), (b), (&) and (¢).

First suppose that e = 2 (recall e = |F': T|'/2 = x(1)). Since F/T is an
irreducible and faithful G/F-module, G/F & A; or S3. But p € Irr (G/F)
has degree 2 and so G/F =2 S3. Now-D(x) =G' < Kand K" < F" =1. If
1% A € Irr (F/T), then each irreducible constituent of A¢ has degree 3 and
kernel T. Parts (c) and (f) follow in this case.

Finally we may assume that e = 22. Now G/F acts faithfully, irreducibly
and symplectically on F//T. A cyclic irreducible subgroup of G/F must have
order dividing 22 + 1 (see [Hu, II, 9.23]). Since 22 | |G/K], it follows from
Corollary 2.15 applied to G/F acting on V := F//T that

(i) G/F <T(2*), |K/F| =5 and |G/K| = 4; or

(i1) G/F < S3wrZ,;, K/F & Z3 X Z3 and G/K is abelian of order 4 or
G/K % Dyg.’

Either G' < K or G/K has a faithful irreducible character of degree 2.
Thus D(x) < K and D(x)"" =1, proving (c).

In case (i), K/F induces three orbits of length 5 on Irr (V)#. We thus
may find A € Irr (V') such that I(A)/F is cyclic of order 4. Then A extends



w A & b (g(Aj/4) by Proposition U011 aud (A7)Y € Lir () of degree 5.
Since F'/T is the unique minimal normal subgroup of G/T, T = ker((A*)%).

Part (f) follows in this case, and we may assume that (ii) occurs.

Now V = Vi & V; for subspaces V; permuted by G, and G/F has a
subgroup M/F of index two that acts irreducibly on each Vi If C;
Cu(V;), then Ci N Cy = F. Since 2 | |M/F|, 2 | |M/C| for each
Thus M/C, = Sy. Let @ = A x 1 € Irr (V) with A # 1. Then C,
In(a) = Ig(e) and [Ig(a)/Ci| = 2. If a* € Irr (Ig(«)) were an extension
of «, then (@*)¢ € Irr (G) would have degree 6 and kernel T. To establish
(), it thus suffices to show that o extends to Ig(@). Since F/T has a
complement H/T in G/T (by Corollary 16.3 (e)), and T < ker(a) < F, it
follows that F'/ ker(a) has a complement J/ ker{a) in Ig(a)/ ker(a), namely
J = (H N Ig(a)) - ker(a) = Iy(a) - ker(a). Since J centralizes F'/ ker(a),
we have Ig(a)/ ker(a) = F/ker(a) x J/ ker(a), and « trivially extends to
Ig(w). ‘ 0

IN =]

16.5 Theorem (Isaacs). Let x € Irt (G) with G solvable. Then
(8) D()" < kex(x);
(b) if x(1)-is odd, then D(x)" < ker(x);
(c) dI(G) < 3+ |ed(G)| — 2; and
(d) if |G is odd, then dI(G) < 2- |cd (@)] - 1.

Proof. (a), (b) We argue by induction on |G| and write x = 8¢ for a prim-
itive 8 € Irr(H), H < G. By Proposition 16.1, D(x) < D(8). If H < G,
the inductive hypothesis yields that D(x)" < D(6)" < ker(§). Since
D(x)" 9 G, D(x)" < ,ecller(8))? = ker(89) = ker(x). Should x(1)
be odd, we also have 6(1) odd and argue inductively that D(x)" < ker(x).
So we may assume that x is primitive. Let F/ker(x) = F(G/ ker(x)), so
that F'"" < ker(x), by Corollary 16.3. We can thus assume that D(x) £ F.

Then Lemma 16.4 implies that y(1) is even and D(x)"" < ker(x). This
proves {(a) and (b).

(¢}, ’\&) Recall thal [ = f; < --+ < fyare the distinct irreducible character
degrees of G and Di(G) = ({ker(s) | ¥ € Irr (@), $(1) < fi}. Parts (a)
and (b) show Dy(G)" < Diy1(G), and when G has odd order, D;(G)" <
Di1(G). Since G/Dy(G) = G/G', we see that d1(G) < 3.1 —2, and when
|Glis odd, d(G)<2-1—1. O

Suppose that M is an elementary abelian p-group, on which G acts. The
action of G' on Irr (M) is given by A?(m?9) =-A(m). If U is the subgroup
of p** roots of unity in C, then Irr (M) is just Hom (M,U). Writing M
additively, M is a vector space over F := GF(p), and G acts on the dual
space M* = Homz(M,F) by f9(m?) = f(m). Since F is just the prime
field, M* = Hom (M, Z,). As.U = Z,, it follows that M* and Irr (M) are

isomorphic G-modules. Indeed, an isomorphism is given by

@ > exp((21i/p)p), € M*.

16.6 Theorem (Berger). Suppose that x € Irr (G) is a faithful and prim-
itive character for a group G of odd order. Then D(x)' = 1.

Proof. We apply Corollary 16.3, and let F = F(G) and T = Z(F) = Z(G).
If F =T, then G is cyclic and we may assume that F > T.

By Corollary 16.3, |F : T|'/? | x(1), and F/T = E\/T x -+ x Ey/T
where each E;/T is an irreducible symplectic G-module. Now Irr (F/T) =
Vi@V, where V; := Irr (E;/T) is an irreducible G-module as well
(cf. Proposition 12.1). By the comments preceding the theorem, V; is G-
isomorphic to the dual space (Ei/T)* of E;/T. Since E;/T has a non-
singular G-invariant form, E;/T & (E;/T)* (see [HB, VII, 8.10 (b)]). Thus
each V; is an irreducible symplectic G-module. By Theorem 8.4, there exists
1% A; € V; such that

G : Ie(\)] < (Vi +1)/2 < V|2
Set o = Ay Ay, € Irr (F/T). Then

|G : Ia(a)| < [] V72 = [Py,

iy
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and |G : Ig(a)| < x(1). Again by Corollary 16.3, F//T has a complement
in G/T. Since T' < ker(«) < F, it follows that F/ker(a) has a comple-
ment J/ ker(a) in Ig(a)/ker(«). Since a is linear, J centralizes F'/ ker(«)
and so Ig(a)/ker(a) = F/ker(a) x J/ker(a). Then « extends to a* €
Irr (Ig(a)/ ker(a)), (a*)C € Irr(G) and ((a*)®)(1) = |G : Ig(a)] < x(1).
Now T < ker((a*)9), but ker((a*)®) N F = T, because O = A1 Am
with \; # 1. By Corollary 16.3 (c), F/T = socle (G/T) and so ker((a*)%) =
T. As ((«*)9)(1) < x(1), we obtain D(x) < T and D(x)' = 1, as de-

sired. - |

16.7 Corollary. Suppose that G has odd order. Then dl(G) < |cd(G)|.

Proof. Arguing as in 16.5 (c), (d), it suffices to show that D(x)’ < ker(x)
for all x € Irr(G). This is done by induction on |G|. If x is primitive,
our claim is an immediate consequence of Theorem 16.6. Otherwise, write
x = 0 for some 8 € Irr (H) and H < G. By Proposition 16.1 and induction,
D(x)" < D(8)" <ker(f), and D(x)" < (,eq(ker(6))? = ker(x). O

Finally, we exploit the information in Lemma 16.4 to give Gluck’s im-

provement that dI(G) < 2-|cd (@) for all solvable groups G.

16.8 Theorem (Gluck). Suppose that G is solvable and that D,_1(G)"
¢ D,(G) for some integer r > 2. Then D,_{(G)"" < D,41(G).

Proof. Recall that 1 = f; < --- < fi are the distinct character degrees of
G and Dy(G) = N{ker(¥) | ¢ € Irr(G), ¥(1) < fi}. Let D = D._4(G).
We may then assume that there exist x, 6 € Irr (G) such that x(1) < f,
8(1) < frt1, D" £ ker(x) and D" £ ker(6). By the definition of D, in fact
x(1) = fr, and so D = D(x). By Theorem 16.5 (a), we may also assume
that (1) = fr41.

Step 1. We have fr+1 <(3/2)- fr.‘
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- Proof. Choose H < G and a primitive character xg € Irr (H) such that

x§ = x. By Proposition 16.1, D = D(x) < D(xo) < H. Let Ky =
ker(xo), To/Ko = Z(H/K,) and Fy/Ky = F(H/K,). By Corollary 16.3,
Fy/ K, is metabelian. Now D £ Fy, since otherwise D" < Ky = ker(xo)
and D" < (1, ¢g(ker(x0))? = ‘ker(x), a contradiction. By Lemma 16.4 (f),
there exists a faithful w € Irr (H/Ty) with xo(1) < w(1) < (3/2) - x0(1).
Consequently, x(1) < wG(l) < (3/2) - x(1). If w® is not irreducible, then
there exists a constituent v € Irr (G) of w® such that (1) < x(1). Thus
D < ker(y) N H = ker(yy) < ker(w) = To, because w is an irreducible
constituent -of yy. This contradicts D £ Fy. Hence w@ is irreducible, and
x(1) < wE(1) < (3/2) - x(1) implies that foy < (3/2) - .

Step 2. Write 6 = 1€ for a primitive character u € Irr (J) and J < G. Let
L = ker(n). Then

(@) 1(1)> 1

(b) if o € Irr (J) and (1) < (2/3) - p1(1), then D < ker(w);

(¢) D < J';and l

(d) dl(J/L) > dI(DL/L) > 5.

Proof. (a) Recall that D = D(x), x(1) = fr and 6(1) = fr4;. By -
Theorem 16.5 (a), D" < D,. If uis li;}ear, then Lemma 16.1 (with p
in the role of §) implies that D, = D(8) < J' < ker(u), and therefore
D" <), eq(ker(n))? = ker(6), a contradiction. Hence (1) > 1.

(b) We now have a%(1) < (2/3) kO(1) = (2/3)-0(1) = (2/3) frsr <
by Step 1. Hence each irreducible constituent 7 of a“ has degree less than
fr and so D < ker(r). Thus D < ker(a%) < ker(a).

(c) If X € Irr(J) is linear, then (a) implies A(1) < (2/3) - u(1). By (b),
D < ker()) and so D < J".

(d) ¥ dI(DL/L) < 4, then D" < Ngea L? = Ngec(ker(p))? = ker(d),
a contradiction. By (c), it also follows that dl (J/L) > dI(DL/L).

Step 3. Let F/L = F(J/L) and T/L = Z(J/L). Then F/T is a faithful
irreducible symplectic J/F-module and |F/T|"/? = 8 = u(1). Also, J/F



lias a faithful irreducible character p satisfying p(1) = 6. .

Proof, By Corollary 16.3, F/T = W; & --- & W} for irreducible symplectic
J/F-modules W;. Also J/F acts faithfully on F/T. Write |W;| = e? for
.er. Then e | #(1) and e > 1, by Corollary 16.3
and Step 2 (d). By Proposition 16.2, J/F has a faithful character o such
that o(1) < rank (F/T). Since F" < L, Step 2 (b, d) implies that there
exists an irreducible constituent p of o with p(1) > (2/3) - (1) > (2/3) - e.
Thus

integers e; and set e = ey ..

vank (F/T) 2 0(1) 2 p(1) > (2/3) -

If p is the smallest prime divisor of e, then (2/3)-e < rank (F/T) < log,(e?).
In particular, e3 > p¢ > 2¢. The only possibilities are p = 3 = e or p = 2
and e < 10.

We claim that e = e; = 8. If not, then each e; equals 2, 3 or 4. Now each
Wi is an irreducible faithful symplectic J/C ;(W;)-module of order 2%, 32 or
21. Observe that GL(2,2) = S; has derived length 2, Sp(2,3) =
has derived length 3, and every solvable irreducible subgroup of G L(4,2) has
derived léngth at most three (cf. Corollary 2.15). Since (); Cy(W;) = F, we
have that dl(J/F) < 3 and dl(J/L) < 5, contradicting Step 2 (d). Thus
e = e; = 8 and F/T is a faithful irreducible symplectic G/F-module of
order 8% = 2°.

Since dim(F/T') = 6, it follows from (16.1) that
62 0(1)2 p(1) 2 (2/3)- (1) >

(2/3)-e=16/3 > 5.

Since 8 | p(1), we have that p(l) = 8 and o = p is a faithful irreducible
character of J/F of degree 6.

Step 4. We have pS € Irr (G) and p©(1) = x(1). In particular, D = D(p®).

Proof. If some irreducible constituent n of p© satisfies 7(1) < x(1), then
D < ker(n) and by Step 2 (¢), D < ker(n) N J = ker(ny) < ker(p) = F,

u(1) 2 (2/3) e (161)

SL(2,3)"
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contradicting Step 2 (d). So every irreducible constituent of p& has degree
fr. But by Steps 1 and 3,

pP(1) = (3/4) - nS(1) = (3/4) - 6(1) < (9/8) - x(1) <2+ f.
Therefore, p@ is irreducible and p%(1) > x(1). Also p%(1) < (1) = fry,
whence p©(1) = x(1).

at least x(1) =

Step 5. Conclusion.

Proof. By Step 3, 03(J/F) =1. Now D < J, and we let E/F = F(DF/F)
so that |[E/F| is odd. Choose ¥ <Y < J and a primitive § € Irr(Y)
such that p = §7. Since by Step 4, f€ = p® € Irr (G) and D = D(p%),
Proposition 16.1 implies that D < Y. If D" < ker(f), then D" < ker(87) =
F and D" < L, contradicting Step 2 (d). By Proposition 16.1, D =
D(B€) < D(B), and therefore D(S)" ¢ ker(f8). Applying Lemma 16.4
of Y/ ker(f), we sce thal the Iall 2/
subgroup of F(Y/ker(8)) is central in ¥/ ker(8). Recall that E < DF <Y
and F' < ker(f). Thus E-ker(f)/ ker() is nilpotent of odd order and central
in Y/ ker(f). Therefore, [D, E] < ker(f). Since D, E <4 J, we also have that
[D,E] < ﬂjej(ker(ﬂ))j = ker(B7) = ker(p) = F. Since E/F = F(DF/F),
in fact E/F = DF/F is abelian. Then D' < F', D" < ker(y) and D" <
ker(1©) = ker(f). The proof is complete. O

to the faithful primitive character g3

16.9 Corollary. If G is solvable, then d1(G) <2 |cd(G)|.

Proof. If, for some r, dl(D(G)/Dy41(G)) > 2, then Theorems 16.8 and
16.5 imply that dI(D.(G)/D;4+1(G)) = 3 and dl(D,41(G)/D,+2(G)) < 1
(where possibly 7 + 1 = led (G)|). Since G/D{(G) = G/G' has derived

length one, it follows that dI(G) < 2 |cd (G). O

16.10 Examples. (a) We note that the assertion of Theorem 16.6 definitely
does not hold for arbitrary solvable groups. Namely G = SL(2,3) has a

_ faithful primitive character x € Irr (G) of degree 2. Thus

= m{ker(z\)

[Aelr(G)and A1) =1} =G =

LY

[

H
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and Qy = Zp # 1.

(b) It is not known whether Seitz’s conjecture d1(G) < ed (G)| would be
best possible. Encouraged by several examples, one might rather believe in
a logarithmic bound for d1(G) in terms of |ed (G)|.

Let P, = Z,wr --- wr Z, be the m-fold iterated wreath-product of Z,,
o

{1

with P, = Z,. If p is odd, an easy induction argument yields that
cd(Pp)={p’ |0 j<14p+-+p"77}, (m22).

On the other hand, dl1(P,,) = m (see Proposition 3.10).

This section is based upon [Be 1], [G1 2], and [Is 3].

§17 Huppert’s p-o-Conjecture

In this section, we are concerned with the “arithmetic complexity” of

character degrees. To be more precise, we introduce some notation. .-

17.1 Definition. For a natural number n, we (as usual) let m(n) be the set

of distinct prime divisors of n and mo(n) = m(n)\ {2,3}. For a group G, we

_define

p(G) = {p prime | p |X(1) for some x € Irr (G)} and

o(G) = max{|7(x(1))| | x € Irr (G)}.
Note that p(G) is a set, whereas o(G) is an integer. Also observe that by the

Tto-Michler Theorem (13.1, 13.13), p ¢ p(G) if and only if G has a normal
abelian Sylow p-subgroup.

For solvable groups G, Huppert has asked the following questiorns:
(1) TIs there a function f (independent of G) such that |p(G)| < f(o(G))?
(2) Does even |p(G)| <2 a(G) hold?
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Before we proceed we show that (2) would be best possible.

17.2 Example. Let n be an integer and py,...,pa, q1,-.., ¢, mutually
distinct primes such that p; | g;ix1(i=1,...,n). Let E; be extra-special of
order ¢} and exponent ¢;, Z; cyelic of order p; and G; = E;-Z;, where Z; acts
fixed-point-freely on E;/Z(E;) but trivially on Z( E;). Since G, has character
degrees {1,pi,q:} (see [Hu, V, 17.13]), it follows that G := G; x --- X G,,
satisfies p(G) = {p1,.--,Pn,qQ1,---,qn} and o(G) =n. '

Whereas question (2) is still open, there are several results answering (1)
in the affirmative (cf. [Is 7], [Gl 3], [GM 1]). Following [MW 3], we present
a proof of the best function f known so far. We shall take advantage of the

results of Section 11.

17.3 Probosition. Suppose that I{/F(K) is nilpotent and C <4 I{. Then
there exists p € Irr (C') such that (1) is divisible by every prime divisor of
|C/(F(I)n O],

Proof. Since C/(F(I{) N C) is nilpotent, there is no loss to assume that
C/(F(K)NC) is abelian. Also F(C) = F(K)NC, because F(C) < K. Now
the abelian group C'/F(C) acts faithfully and completely reducibly on both
F(C)/2(C) and V := Irr (F(C)/®(C)), by Theorem 1.12 and Proposition
12.1. Write V. = V1 ®- - @V, for irreducible C-modules V;. Since C/F(C) is
abelian, Ic(A\;) = Ce(Vi)for 1 # X\, e Vi (i =1,...,;m). Set A= X;--- A,
and g = A\¢ € Iir (C). Then pu(1) = |C/F(C)| = |[C/(F(K)nC)|. . O

17.4 Lemma. Suppose that M is a normal elementary abelian subgroup of
the solvable group G. Assume that M = Cg(M) is a completely reducible
G-module (possibly of mixed characteristic). Set V' = Irr (M) and write
V=WV®- - &V, for irreducible G-modules V;. For each i, write V; = Y,G
for primitive modules Y;. Assume that Ng(Y;)/Cq(Y:) is nilpotent-by-
nilpotent for eachi. If M < N < G, there exists § € Irr (N) whose degree
is divisible by at least half the primes of mo( N/M).
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Proof. We may write each V; as a direct sum of the G-conjugates of Y;, i =
1,...,m. Consequently, V = X;®---® X, for subspaces X; of V permuted
by G (not necessarily transitively) with {¥7,...,¥;,} C {X,...,X»}. Fur
thermore, if N; = Ng(X;), C; = Cg(X;) and F;/C; = F(N;/C;), then X;
is a primitive, faithful N;/C;-module and N;/F; is nilpotent. )

Let I{ =(); Ni € G be the kernel of the permutation representation of G
on {X,,...,X,}. Since ();Ci = M, we have (), Fi/M = F(I{/M) Q G/M.
Let H = (), F;, so that H/M = F(I{/M). Observe that I/H is nilpotent.
Set C =KNNand F = HNN = CnN H. By Proposition 17.3, there
exists § € Irr (C/M) such that 6(1) is divisible by every prime divisor of
|C/F|. Since C < N, there exists 7 € Irr (V) such that 7(1) is divisible
by every prime divisor of |C/F|. Consequently it suffices to show there
exists 8 € Irr (N) with §(1) divisible by each prime in mo(N/C)Umo(F/M).
To do this, we need just find some A € V such that mo(N : Cn(A)) 2
mo(N/C) Umo(F/M).

By Corollary 5.7, we proceed to choose A C {X,...,X,} such that
staby(A)/(N N IK) = staby(A)/C is a {2, 3}-group. Furthermore, we can
assume that A intersects each N-orbit non-trivially. Without loss of gen-
erality, A = {X;,..., X} for some l e {1,...,n}. Set A = X;--- N eV
for nou-principal A; € X;. Finally suppose that € Syl (N) for a prime
g > 5, and @ centralizes A. Thus @ < stab y(A). But stab y(A)/C is a
{2,3}-group. Thus Q < C. For éach i, F; N C/C; N C is isomorphic to
a normal nilpotent subgroup of N;/C;, and N;/C; acts irreducibly on X;.
Thus, for i = 1,...,1, /\I,~ is not centralized by a non-trivial Sylow subgroup
of F;nC/CiNC. Since QNF; € Syl,(FinC), we have that ¢ { [F;NC/CinC|
fori=1,...,1. By ourchoice of A, each F;/C; ( = 1,...,n) is conjugate to
some F;/C; with ¢ € .{1, ..., 1}. Hence ¢} |F;nC/C;NC|forallj =1,...,n.
Since ();Ci = M and [);(F; N C) = F, we have that ¢ { |[F//M|.” We have
already seen above that @ < C and so ¢ } |[N/C|. Thus |N : Cn(N)| is
divisible by every prime in mo(N/C) U mo( F/M), as desired. O

17.5 Lemma. Suppose that M = Cs(M) is a normal elementary abelian
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subgroup of a solvable group G and a completely reducible G-module (pos-
sibly of mixed characteristic). Assume that G splits over M. Then there
exists x € Irr (G) such that x(1) is divisible by at least half the primes in
mo(G/M).

Proof. We proceed by induction on |M|. Write M = M, @ --- & M, for
n > 1 irreducible G-modules M;. Set V; = Irr (M;) so that each V; is an
irreducible G-module and V = V; @ --- @ V,, is a faithful G/M-module
by Proposition 12.1. For each i, choose H; SI G and X; an irreducible
primitive H;-module with X,-G = V. If H;/Cq,(X:) <T(X;) for each 1, this
lemma follows from Lemma 17.4. We assume without loss of generality that

Hi/Cy, (X1) £ T(X1).

Let K = Ce(M,) 9 G. Let H be a complement for M in G and let J =
NH where N =M, ®---®M,. Then JNM = N. Now JNK = N(HNK)
acts on N. and CJnI((N) = N. By induction, there exists 7 € Irr (J N K)
such that 7(1) is divisible by at least half the primes in mo((J N K)/N) =
wo(I/M), as (JNK)/N = /M. Now JNK < J and centralizes M/N 2
M,. Thus JN K <9 KJ = G and K/N = M/N x (J 0 K)/N. ‘

By the choice of M), Theorem 11.4 implies that there exists A € V; such

that mo(G/K) = mo(G : Ig(N)). Set f = X7 € Irr(K). Now Ig(f) C

Ig(A). Thus mo(G : Ig(B)) 2 mo(G/K). If x € Irr (G|B), then as I < G,
mo(x(1)) 2 mo(G/IC) U mo(7(1)). Since 7(1) is divisible by at least half the
primes in mo(I{/M), certainly x(1) is divisible by at least half the primes in
mo(G/M). O

17.6 Theorem. If G is solvable, then there exists B € Irt (G/®(G)) such
that (1) is divisible by at least half the primes in 7o(G/F(G)).

Proof. Apply Lemma 17.5 with G/®(G) and F(G)/®(G) in the role of G
and M, respectively. Note that Gaschiitz’s Theorem 1.12 guarantees the

hypothescs of Lemma 17.5 are satisfied. 0O
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As already formulated above, Ito’s Theorem 13.1 for solvable groups G
states p ¢ p(G) if and only if G has a normal abelian Sylow p-subgroup.
Thus p € p(G) if and only if p I |G/F(G)| or F(G) has a non-abelian
Sylow p-subgroup, i.e. p € p(G) if and only if p‘| |G/Z(F(G))|. We let
p0(G) = p(G)\ {2,3).

17.7T Theorem. Let G be solvable.

(a) There exists x € Irr (G) such that x(1) is divisible by at least one
third of the primes in po(G).

(b) Assume whenever r is a prime and O.(G) is non-abelian, then also
r | |G/F(G)|. Then there exists x € Irr (G) with x(1) divisible by
at least one half of the primes in po(G).

Proof. Let & be the set of those primes s for which O,(G) is non-abelian

and s { |G/O,(G)|. Now F(G) certainly has an irreducible character ¢
whose degree is divisible by all s € .. Hence 7 € Irr (Glyp) also satisfies
s | x(1) for all s € 8. By Theorem 17.6, there exists f € Irr (G) with
A(1) divisible by at least half the primes in mo(G/F(G)). By the comments
preceding this theorem, p(G) = n(G/F(G)) U G holds.

Under the hypothesis of (b), & = @ and we just let x = . To prove (a),
we let x = B if |po(G)|/3 > |6\ {2,3}|, and let x = 7 otherwise. O

We reformulate Theorem 17.7 in terms of Huppert's p-a-conjecture. The

summand “2” refers to the role of {2,3} above.

17.8 Corollary. Let G be solvable.
(a) |p(G)] £3-0(G)+2; and
(b)) |p(G)|<2-0(G)+2if 7'||G/F(G’)| whenever O,(G) is non-abelian.

17.9 Remarks. (a) For non-solvable groups G, it is still unknown whether

there exists a function f according to Huppert’s question (1). Question (2)
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however, in general has a negative answer, e.g. [p(4s)[ = 3 and o(4s) = 1.,
Using the classification of finite simple groups, the following bound has been
established by Alvis and Bairy [AB 1] and Manz, Staszewski and Willems
[MSW]:

Let G be simple. Then |p(G)| < 3- a(G).

It seems reasonable to ask whether this estimation holds in general, or

whether even a factor 2 and an additive constant is the “right” answer.

(b) Returning to solvable groups G, the natural question arises whether
also dl(G) can be bounded in terms of o(G). To see why this is not the
case, we let p, ¢ be distinct primes and consider the class € of {p, ¢}-groups.
If G € €, then clearly ¢(G) < 2 holds. On the other hand, it is well-known
that within € there is no universal bound for the derived length (nor even

for the nilpotency length).

The following result (cf. [MS 1]) may serve as a substitute. It again relies

on Theorem 12.9.

17.10 Theorem. Let G be solvable. Then G has a characteristic series
I<Ng< Ny SNy <o S Nopn SNy =G

with the following properties: ;
(i) N} =1 and A < Ny for the normal abelian Hall p(G)'-subgroup A
of G (A exists by Theorem 13.1);
(i) (Naix1/N2))'=1fori=0,...,k—1;
(i) |m(Ngi/Nyio1)] < o(G) fori =1,...,k; and
(iv) k <2-0(G).

Proof. We argue by induction on s := ¢(G). If s = 0, then Ny = G is’
abelian and k = (0. We may therefore assume that s > 0 and choose iterated
commutator subgroups N/A := (G/A)7) and M/A = (G/A)UHY such that -



o(N) = s but o(M) < s. By induction, there exists a characteristic series
1< Ny <Ny <Ny<--r<Ny_y <Ny =Mof M with
(i)) Ny = 1 and A < B < Ny for the normal abelian Hall p(M)'-
subgroup B of M; .

(i)' (N2iz1/Ngi)' =1fori=0,...,1—1;

(i) |m(N2i/Nyii)| So(M) <sfori=1,...,1 and

(iv) 1.<2-0(M) <2(s—1).
By their definition, N and M are characteristic in G and N/M is abelian.
We may choose ¢ € Irr (V) with |r(y(1))] = s and we denote the set
of prime divisors of ¥(1) by =. Let x € Irr(G). Since ¥(1) l x(1),
each prime divisor of x(1) belongs to 7 and x(1)/¥(1) is a m-number. By
Theorem 12.9, G/N has an aBelian Hall n'-subgroup. Consequently the
m'-length of G/N is at most 1 by Lemma 0.19. We extend the above char-
acteristic series of M to a characterist‘ic series of G by setting Noipy = N,
Natpa/Nogr = O(G/Naig1)y Natya/Naryz = O, (G/Napyq) and Nyjyy =
G. Then G/Njit3 i1s a m-group. With k := [ + 2, properties (i)~(iv) are
satisfied. O

While ¢(G) is a measure for the number of different primes in the charac-
ter degrees of G, 7(G) will measure the maximum multiplicity of the primes

in the character degrees of G.

17.11 Definition.” For a group G and a prime p, recall the definition of
e,(G) as the smallest non-negative integer e such that p®*!  x(1) for all
x € Irr (G) (see 14.1). We set ;

7(G) = max{e,(G) [ p

G1}-

Observe that the group G of Example 17.2 satisfies 7(G) = 1, but |p(G)] = n.
Therefore we cannot expect to estimate [p(G)[ in terms of 7(G). We finish
this section with a result.of Lejsering and Manz [LM 1].

17.12 Theorem. Let-G be solvablé. Then

dl(G) < 2. (7(G) + log, 7(G) + 3).

Proof. For a prime divisor p of |G|, we denote by r, the p-rank of G/O,(G),
and by r the rank of G /F(G). It follows from 14.12 (c) that r, < 2-e,(G) and
therefore 7 = max{r,} < max{2-¢,(G)} =2 7(G). We set G = G/F(G).
By Gaschiitz’s Theorem 1.12, F(G)/®(G) is a faithful completely reducible
G/F(G)-module (possibly of mixed characteristic). Write F(G)/®(G) =
Vi@---®V, with irreducible G-modules V; and C; = Cx(Vi). Since r <
27(@), also dim(V;) < 2.7(G) fori = 1,...,n. It thus follows from Corollary
3.12 that '

d1(G/C:) < 2-logy(2 - dim(V7)) < 2-log,(4 - 7(G)).
Since G/F(G) < [1;G/C:, we also have dI(G/F(R)) < 2-log,y(4 - 7(G)).

Let P equal O,(G) or O,(G), respectively. Then P is normal in G or G,
respectively, and Clifford’s Theorem implies that 7(P) < 7(G). Since I is a
p-group, it follows that |cd (P)| < 7(P) + 1, and Taketa’s Theorem (cf. {Is,
5.12]) yields dI(P) < [cd (P)| < 7(P)+1 < 7(G) + 1.

Altogether, we obtain

dI(G) < dI(F(G)) + Al (F(G)) + dI(G/F(G))

<2 (m(G)+ 1) +2-logy(4-7(G)) =2 (1(G) + log, 7(G) + 3),

as required. O

We note that Theorem 17.12 is far au;ay from being best possible. If e.g.
(G)=1 (ile. all character degrees are squarefree), then the above estimate
yields dl(G) < 8. Best possible however in this case is d1(G) < 4 (see [HM
1]).

§18 The Character Degree Graph

We construct a graph I'(G), whose vertices are the elements of p(G), i.e.

those primes ¢ that divide the degree x(1) of some irreducible character

[u—
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x € Irr (G). We draw an edge between distinct g, r € I'(G) if and only if

qr | x(1) for some x € Irr (G). A distance function d(q,s) = dg(q,s) is
defined in the usual way:

d(q, s) is the length of the shortest path between ¢ and s.

In particular, d(g,q) = 0, d(g,s) = oo if ¢ and s lie in different connected
components and d(g,s) = 1 if and only if ¢ # s and g¢s I 7(1) for some
7 € Irr (G). If A is a connected component of I'(G), then the diameter of A
is defined by

diam (A) = max{d(q,s) | ¢,5 € A}.
Finally

diam (I'(G)) = max{diam (A) | A a component of I'(G)}.

The number of connected components of I'(G) will be denoted by n('(G)).
As usual, 7(G) is the set of prime divisors of |G|.

We will show that there are very limited configurations for the graph
I'(G). If G is solvable, then the number of components of I'(G) is at most
2 (Theorem 18.4). If T'(G) has two (:ompom:uté, then both components are
regular graphs. More will be said about such groups in the next section.
With further work, we show (Theorem 18.7) that whenever A C I'(G) and
|A] > 3, there exists x € Irr (G) with x(1) divisible by at least two distinct
primes in A. For |A| > 4, this was proven in [MWW]. Modifications by
Palfy [P] 2] improved this to |A| > 3. We will use Theorem 18.7 to prove
for solvable G that diam (I'(G)) < 3. We will discuss graphs of non-solvable
groups at the end of Sections 18 and 19.

18.1 Lemma. Suppose that G/F(QG) is abelian. Then there is x € Irr (G)
such that x(1) = |G : F(G)].

Proof. As a consequence of Gaschiitz’s Theorem 1.12 and Proposition

12.1, Irr (F(G)/®(G)) is a faithful and completely reducible G/F(G)-module

i
ky
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(possibly in different characteristics). Write
I (F(G)/®(G@)=Vi®--—- DV,

with irreducible G-modules V; and set C; = Cg(V;). Since G/Cj is abelian, ‘
G/C; acts fixed-point-freely on V;. Take 1 # X\ € Vi (: = 1,...,n). Then

IOy - A) = [ 1) =[] Ci = F(G)

and x := (A1... )% € Irr (G) has the desired property. O

'

18.2 Lemma. Let N < G and M/N = F(G/N). Suppose that G/M is .

nilpotent. Then we have
(a) ¢ € I(G) for all ¢ € (G /M) and
d(q,q') = 1 for different q,q' € n(G/M).
(b) Ifv € T(G) with v {|G/N|, then either
d(v,p) = 1 for some p € *(M/N)NT(G), or
d(v,q) = 1 for all ¢ € 7(G/M).

Proof. (a) Replacing G by the complete preimage of Z(G/M) in G, we
may assume that G/M is abelian. The assertion now follows from Lemma
18.1. i

(b) Let x € Irr(G) with v | x(1). Suppose p f x(1) for all p € w(M/N).
Let @ = {q | ¢ prime ,q { x(1)} and H/M € Hallg(G/M). Note that
H <4 G. Now choose 1 € Irr (H) with [x#,%] # 0. Then ¢y € Irr (V)
and v | #(1): By Lemma 18.1, there is 7 € Irr (H/N) whose degree is
divisible by all ¢ € 7(H/M). Then Lemma 0.10 implies 74 € Irr (H) and
vq | rip(1) for all ¢ € n(H/M). Now the degree of p € Irr(G|rip) yields
d(v,q) = 1 for all ¢ € 7(H/M) and the degree of x leads to d(v,¢) =1 for
all g € 7(G/H). O




18.3 Lemma. Suppose that N < G is maximal such that G/N is solvable

but non- abelian. Then one of the fo]lowmg two cases occurs.
(i) G/N is a non-abelian p-group and d(v,p) <1 for all v € I(G); or
(ii) G/N is a Frobenius group. The Frobenjus kernel M/N is an elemen-
tary abelian r-group and G /M -is abelian. Furthermore if v € I(G),
then d(v,r) <1 or d(v,q) <1 for all g € m(G/M).

Proof. If G/N is a p-group and X € Irr(G) satisfying p { x(1), then
Xxn € Irr(N) and oy € Irr (G) for all o € Irr (G/N) by Lemma 0.10.
Conclusion (i) then holds. We may assuine that G/N is not a p-group. It
follows from the hypotheses and Lemma 12.3 of [Is] that G/N is a Frobenius
group whose Frobenius kernel M/N is an elementary abelian r-group with

M/N = (G/N) = F(G/N) Conclusion (ii) follows with help of Lemma
18.2 (b). a

Our first result requires solvability of only a small factor group of G.

18.4 Theorem. Assume that G has a non-abelian solvable factor group.
Then one of the following occurs.

(i) (I(G)) =1 and diam ( (T(G)) <4;

(i) n(T(G)) = 2 and diam (T(G)) < 2.

Proof. Choose N < G maximal such that G /N is solvable but non-abelian.
If G/IN is a p-group, Lemma 18.3 gives that d(v,p) < 1forall v e I'(G)
and thus n(F(G)) = 1 and diam (I'(G')) < 2. We may therefore assume that
G/N is a Frobenius group, with kernel M/N 2 G/N an elementary abelian
r-group, and G/M is a Q-group for a set of primes Q. Furthermore, if
v € I'(G), we have d(v,r) < 1or d(v,q) < 1forallv € Q. Thus n(I'(G)) <2
and if I'(G) has 2 components, its diameter is at most 2. Assume I'(G) has
1 component. We may assume that r € ['(G), since otherwise I'(G) has
diameter at most 2. Let qo € Q and let

qgo t1 12 ty_ar
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be a shortest path of length d between ¢ and ». Assume that 4 > 3
and choose ¢ € Irr (G) such that tit, I (1),
¥(1). Since G/N has an irreducible character divisible by every ¢ € Q and
d(t2,q0) = 2,1, ¢ Q. Let Q/M be a Sylow go-subgroup of G/M and let 7
be an irreducible constituent of . Then ¢, ] 7(1) and 7y € Irr (V). Now
@/N has an irreducible character g with go l B(1). Therefore f7 € Irr (Q),
qota ( pAr(1), and Q@ < G.  Thus d(qo,%2) = 1, a contradiction. Hence
d(g,r) < 2forall ¢ € Q. If v € I'(G), we have either d(v,q) < 1 for all
g € Qor d(v,r) < 1. Hence diam (I'(G)) < 4. ~ . O

but ¢¢ and r do not divide

If G is actually solvable, we may strengthen both (1) 'c‘md (11) (see Corollary
18.8 below). This however requires some very technical preparations. The
next result we are aiming at is that if # C T'(G) with |7| > 3, then d(p,q) =1
for some p,q € 7 (Tl;e<)1'6111 18.7).

18.5 Lemma. Let G be solvable, and 7 be a non-empty set of prime divisors
of G. Suppose that V is a faithful G-module and |V| = p™ for some prime
p. Assume that Cg(v) contains a Hall m-subgroup of G for each v € V.
Furthermore suppose that Vi is homogeneous for all N char G. Then

) for all ¢ € .
1 and a Hall

(a) There exists x- € Irr (G) such that ¢ l x(1
(b) If G is an {s} U n-group for some s ¢ m, then || =
mw-subgroup of G has prime order.

(c) If|V| # 3%, then each prime in = divides m.

Proof. The hypothesis on centralizers implies that O,(G) centralizes V
and so O,(G) = 1. In particular, F(G) # 1 is a n'-group. Note, without
loss of generality, that we may assume G = O"'(G). Corollary 10.6 applies
here and we may conclude that V is an irreducible G-module and one of the

following occurs:
(i) G <T(V) and G/F(G) is cyclic;
(i) V] = 32 G = SL(2,3), and 7 = {3); or
(i) [V] = 2%, 7 = {2}, |G/F(C)| = 2, and |F(G)| =

-

N R
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.
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In cases (ii) and (iii), all three conclusions (2), (b), and (c) hold. We thus
assume that G < T where I' = F(V)

Since I is cyclic, so is G. Since O"I(G’) = G, we have that F(G) = G'isa
cyclic 7'-group and G/F(Q) is a cyclic m-group. Because I'\(V)NG < F(G)
IG/F(@)| | IT(V)/To(V)]. Hence |G/F(G)| | m, proving (c). By Lanné
18.1, there exists x € Irr (G) with x(1) = |G/F(G)|, proving (a). To prove
(b), we may assume that F(G) is a cyclic s-group for a prime s,

Let S < I'(G) with |S| = 5. Because F(G’) = Cg(F(G)) is a cyclic
s-group and G /F(G) is an s'-group, it follows that Cs(S) = F(G). Conse-
quently, whenever F(G) < H < G, H is a Frobenius group. Because H <G,
each 0 #£ v € V is centralized by a Hall m-subgroup of H. But CF(G)('U)—_Z 1
and H/F(G) is a m-group. Hence Cp(v) € Hall.(H). If R € Hall.(H),
then [V#] = |Cy(R)#||Hall,(H)| = |Co (R)H|F(C)|.

In particular |Cy(R)| is independent, of the choice of H for F(G) < H <
G, and R € Hall,(H). But dim(Cy(R)) = dim(V)/|H : F(G)| by Lemma
0.34. Thus it follows that G/F(G) has prime order and |n| = 1. a

18.6 Lemma. Suppose that' V is finite faithful irreducible G-module for a
solvable group G. Assume that 7 is a non-empty set of prime divisors of |G|

and C¢(v) contains a Hall m-subgroup of G for each v € V. Then
(a) There exists x € Irr(G) such that

q l x(1) forall qe€n.

(b) I G is an {s} U 7-group for some s ¢, then |r| = 1.

Proof. Observe that if K < @, then Cik(v) contains a Hall m-subgroup of

K. In particular, O,(G) centralizes V, whence 0.(G) =1 and F(G) i§ a
7'-group.

We may assume that |7| > 2, since otherwise (b) is trivial

follows from Ito’s Theorem (see Theorem 13.1). Let H = O™ (@) and write

and part (a) -
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Vi = W1 ®--- @ W, for (possibly isomorphic) irreducible H-modulés I;.
Let D; = Cy(Wj), so that (], D; = 1 and the D; are G-conjugate. Now
|H/D;| is divisible by every prime in m. Suppose that H < G. By the
inductive hypothesis applied to the action of H/D; on Wj, we have that in
(b), ] =1 and in (a) there exists 7 € Irr (H) with ¢ | 7(1) for all ¢ € 7.
Part (a) is then completed by choosing x € Irr (G|7). We thus assume that
G=0"(Q). :

By Lemma 18.5, the result is valid if Vv is quasi-primitive. Choose C 4 G
maximal with respect to V¢ not homogeneous. Since 0™ (G) = G, we will
now fix a prime ¢ € 7 with ¢ | |G/C|. Next apply Lemma 9.2 and Theorem
9.3 to conclude that

Ve=Vi® -V,

for homogeneous components V; of V¢ that are faithfully and primitively
permuted by G/C. Also

(1) n=23,5 or §;

(2) ¢ =2, 2 or 3 (respectively);

(3) G/C is isomorphic to Dg, Dyo or AT(2%) (respectively);

(4) C/C¢c(V;) acts transitively on V; \ {0}; and

(5) if ¢ = 2, then charV = 2.

(As usual D,, denotes the dihedral group of order m. Recall that Al'(2?)

has & unique minimal normal subgroup B. Also AT'(2*)/B is non-abelian of
order 21 and |B| = 8.) '

To prove (b), assume that G is a 7U{s}-group. The last paragraph shows
that |G/C| is divisible by exactly one prime in 7. Since AF(23) has order
8-.3.7, we thus assume that ¢ = 2 = charV, G/C = Dg or Djg and s = 3
or 5. Now (4) above and the hypothesis that each v € V is centralized by a
Hall 7-subgroup imply that [Vi] — 1 = s/ for some j. Since s = 3 or 5 and
char (V;) = 2, we must have |V;| = 4 and s = 3 by Propositi(‘m 3.1. Then
C/Cc(Vi) is a {2,3}-group and G is a {2,3}-group. This proves (b).

We set C; = C¢(V;) and note (), C; = 1. Since the C; are G-conjugate,
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every prime in w, except possibly ¢, divides |C/C;|. Observe that the hy-
potheses imply that Cc(w)/C) contains a Hall w-subgroup (# 1) of C/Cy
for each w € V;. Since C/C; acts transitively on ¥, \ {0}, C/C, acts quasi-
primitively on V;. Now Lemma 18.5 implies that there exists v € Irr (C)
with Cy < ker(r) and T(l) divisible by every prime of 7 dividing |C|. Since
C' 4 @, we may assume that ¢1|C|. Let mg = 7\ {q} and recall that ¢ =2
or 3. We have that my # @, no prime in my divides |G/C| and 2 ¢ m. If
|Vi| = 32, then C/C; would be a {2, 3}-group, which is not possible because
g <3,q1]|C|, and O(G) = 1. By Lemma 18.5 (c), every -prime in mg
divides m, where |V;| = p™, p = char V. Also, no divisor of p™ — 1 is in
mg, by transitivity. As 2 ¢ mg, it thus follows that m > 3, m # 4 and
p™ # 2%, By Corollary 6.6, we have a series C; < R; < F; < C of normal
subgroups of C such that F;/C; = F(C/C;) is a cyclic 7'-group, C/F; is
cyclic, R;/C; is a Sylow r-subgroup of C/C; for a Zsigmondy prime divisor
rof p™ —1, and F;/Ci = Cgyc;(Ri/C;). Welet =), Fjand R=(); R;.
Then F' = F(C) = C¢(R), R < G is a Sylow r-subgroup of C' and both R
and F are abelian (sec Proposition 9.5). Also F'is a 7'-group, as F(G) is.

Let C; < M; < R; with |R;/M;| = r and let M = (), M;, so that
R/M is elementary abelian. Since R;/C; is cyclic, the M; are all the G-
conjugates of M, and hence M < G. Since r { |C/F;|, then R;/M; is a
faithful C/Fi-module. Furthermore, (M; N R)/M is a C-submodule of R/M
of codimension 1, and R/(M;NR) is C-isomorphic to R;/M;. It follows that
R/M is a faithful C/F-module and, as r { [C/F|, R/M = A, ®--- ® A,

where each Aj is C-isomorphic to R;/M; for some 1.

We next show that /M is in fact a faithful G/ F-module. Since C/F acts
faithfully on R/M, we have that C N Cg(R/M) = F and thus C(R/M)
céntralizes C/F. Since m # 2 or 4 and since C > F (as my # @), Lemma
9.10 yields that C/F = Cg/p(C/F). Thus Cg(R/M) < CN Ce(R/M) =
F. So R/M is a faithful G/F-module.

We claim that for each 1 # 7 € It (R/M), |C : Ic(7)] is divisible by évery
" prime:in mo. In particular, we can then assume that q 1 |G : Ig(7)| for all
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l'r € Irr (R/M), since otherwise the conclusion (a) of the lemma is satisfied

with x € Irr(G|r). For this claim, we write 7 = Ty X ==+ X Tl and observel
that Io(r) = (\; Ie(ri). Without loss of generality, 7 =71 X 1x---X% ia;c
1 # ry € Irr(4,). Since Ay s C-isomorphic to, s.ay, R,/M,, Ic(m) = Fu.
Since C/F, is divisible by all primes in g, the claim holds.

© By the last paragraph, ¢ VG : Ig(r)| for all T € Irr (R/M). No.)w
lIrr(R/M) is a faithful G/F-module. If ¢ = 2, then r = 2 by Lemn?a 9_
This is a contradiction, because ¢ t|C|. Hence ¢ = 3. Since eacl} prime in
o E O divides m and 2 ¢ mq, either m > 7Torm = 5. In particular, thc;
Zsigmondy prime divisor 7 of p™ — 1 isnot 2, 3, or 7. Thus r 1 |G/C| and
r1|G/F|.

We now have that ¢ = 3 and G/C = AT(2%). L@t S = Ng(Ci) 2
Ng(Vy) > C. Then S/C = AT(2%) or T'(2°). Let D = Cs(Vy) so that
DN C =C, and §/D acts transitively on Vi \ {0}, because C < 5. Recall
that |C/Cy| is divisible by all primes in 7. By Lemma 6.5, we may chgose
a faithful linear A € Irr (F1/Cy) such that AC € Irr (C) and hencg A¢(1)
is divisible by every prime in . Since A has kernel Cy, Ia(\®) S' S.
Furthermore, {A€} = Irr(C|A). Thus it suffices to show tha.F fh.ere\e}nsts
§elrr(S|\) = Ip1‘(S[Ac) with 3 | 8(1), because then (1) is divisible by all

primes in 7 and §6 is irreducible.

Since DFy/D = F/Cy, A may be considered as a linear chz\.racter- of
DF,/D < F(§/D). But S/ D acts transitively on vi\ {0}, :'md thu‘s applying
Lemma 6.5, A extends to A" '€ Irr (F(S/D)) with (\*)® irreducible. Note
that for v = (£,0,...,0) € V'\ {0}, we have Ca(v) < Ng(Vh) £ S, hence
ecach z € Vj is centralized by a Sylow 3-subgroup of S/D. Thus 3 { |F(S/D)|
and we obtain either 3 | (A*)5(1) or 3 l |D/C1|. By the last paragraph,
we are done in the first case and we thus assume that 3 \ |D/Cy|. Now
pc/C < §/C and S/C = AD(2?) or I'(2%). Since 3 ‘ '|DC/C|,.DC =S5
and S/Cy = C/Cy x D/Cy. Since D/C, =2 5/C, there exists p € Irr(D/C'IE)l
with 3 | 1(1). Now § := AC x pe Irr (S|A) and 3 | 5(1).

—

—
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18.7 Theorem. Let G be solvable and let 7 be a set of primes contained
in F(G’) Assume that |r| > 3. Then there exist distinct u, v € 7 such that
uv I x(1) for some x € Irr(Q).

Proof. We proceed by induction on |G|. Let F = F(G). Now

G) = {p [ G does not have a normal abelian Sylow p-subgroup}

= {p ' p divides |G/ F| or 0,(G) is non-abelian).

Note that F' < ¢(G) < F and F(G/2(G)) = F/%(G) (see Theorem 1.12).

Arguing by induction on |G|, we may assume that

Step 1. If P ¢ Sylp(F) for a prime p, then either

(i) P is elementary abelian, or

(ii) p€ x, pt|G/F|, and P’ is a minimal normal subgroup of G.

Step 2. If M is a minimal normal subgroup of G, then G/M has a norinal
abelian Sylow s-subgroup S/M for some s € . Furthermore, S is either a
non-abelian s-group or M is a non-trivial S/M-module. |
Proof. Arguing by induction, we may assume. thaf. there is some s € 7 such
that s ¢ T'(G/M). Thus G/M has a normal abelian Sylow s-subgroup S/M.
Since G does not have a normal abelian Sylow s-subgroup,
and S' = M. This step follows.

S is non-abelian

Step 3. If F is abelian, then F is the unique minimal normal subgroup of

G.

Proof. If F is abelian, then ®(G) = 1, by Step 1. By Theorem 1.12, F' is
a completely reducible G-module. For this step, we may assume there exist
distinct minimal normal subgroups M, N of G. By Step 2, G/M and G/N
have a normal abelian Sylow s-subgroup S/M and a normal abelian S&low
t-subg;oup T/N, respectively, for primes s, t € m. (We do not assume that

s and t are distinct!) Furthermore, $ and T are non-abelian. Since F is

L4
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abelian, s { |[M| and t{|N|. Now MN =M x N. Let 1 # p € Irr (M) and
1 # v € Irr (N). Choose 6 € Irr (ST |uv). Now p is a constituent of dps and
thus there exists a € Irr (S|p) with [fs,e] # 0. Since M is a non-trivial
module for the s-group S/M < G/M, and M is an irreducible G /M-module,
Cum(S/M) =1. Since p # 1, s | a(l)-and s I 6(1). Likewise, t ) 6(1). If
x € Irr (G|9), then st | (1), since ST < G. The conclusion of the theorem
is satisfied unless s = . Let Sy € Syl,{(G) and observe S = SoM, T = Sy N,
and Sy is abelian. Now M Sy/M and MN/M are normal in G/M and so
[So, MN] < M. Likewise [So, MN] < M NN =1. Thus § = Sg x M and

G have a normal abelian Sylow s-subgroup, a contradiction to s € I'(G).

Step 4. F'is non-abelian,

Proof. By Steps 2 and 3, we can assume that F' is the unique minimal
normal subgroup of G and G/F has a normal abelian Sylow s-subgroup
S/F # 1for aprime s € m. If 1 # A € Irr(F) and 7 € Irr(S|A), then
3 | 7(1). Hence s | B(1) for all f € Irr (G|\). Thus we may assume that
|G : Ig())| is not divisible by each prime in 7 \ {s}. Applying Lemma 18.6
(a) to the action of G/F on F, there exists v € Irr (G/F) such that (1)
is divisible by all primes in 7 \ {s} Since |r| > 3, the conclusion of the

theorem is satisfied.

Step 5. Fisa non-abelian Sylow r-subgroup of G for some r € 7.

Proof. Now F has an irreducible character whose degree is divisible by every
prime p for which the Sylow p-subgroup of F is non-abelian. Thus by Steps
1 and 4, there is a unique prime r for which F' has a non-abelian Sylow
r—subgroub R. Furthermore, r € 7 and R € Syl,(G). For this step, we may
assume that G has a minimal normal subgroup M with M £ R. By Step 2,
G/M has a normal abelian Sylow s-subgroup S/M for some s € m and S is
non-abelian. Since M £ R, the uniqueness of r implies that s { |M]. Hence
a Sylow s-subgroup of G is abelian, whence s # r. Now RS =R x S <G
and RS has a character of degree divisible by rs. In this case, the conclusion

of the theorem is satisfied. This step follows.
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For convenience, say m = {r,s,t}. Also let S € Syly(G) and T € Syl,(G)

_such that ST = T'S. By Steps 1 and 5, F' is the unique minimal normal

subgroup of G. Let C'= Cg(F') > F.

Step 6.
(i) Without loss of generality, S < C and t { |C|.
(it) SF/Fis a nofmal abelian Sylow s-subgroup of G/F.
(iii) For all 1 # & € Irr (F'), |G : Ig(a)| is coprime to st and Ig(a)/F
contains normal abelian Sylow s- and Sylow t-subgroups. In particu-
lar, ST is an abelian Hall {s,t} subgroup of G.

Proof. Let 1 # « € Irr(F') and observe that r | 6(1) for all § € Irr (F|a).
Thus r , (1) for all o € Irr(Gla). Consequently, I5(a) contains a Hall
{s,t}-subgroup of G for all « € Irr (F'). Applying Lemma 18.6 (a) we may
assume that G/C is divisible ‘by at most one prime in 7\ {r} = {s,t}.

Without loss of generality, S is contained in C.

Since C/F' is an r'-group, there exists f € Irr (F|&) that is invariant in
C by Lemma 0.17 (d). Again by coprimeness, 8 extends to f* € Irr (C). As
¢0* € Irr (C|P) forall € € Irr (C/F) and r | B(1), we have (st, £(1)) =1 for
all { € Irr(C/F). Thus C/F has normal abelian Sylow subgroups SF/F
and (TN C)F/F. Clearly, SF/F then is a normal abelian Sylow subgroup
of G/F.

By Lemma 18.1, there exists n € Irr (C) such that 5(1) is divisible by all
prime divisors of [F(C/F)|. In particular, s | n(1) and we may assume then
that ¢t { [F(C/F)|. But C/F has a normal Sylow t-subgroup. Thus t 1 |C].
Since (|Ig(«)/F|,|F|) = 1, the same argument as in the previous paragraph
shows that Ig(c)/F has normal abelian. Sylow s- and Sylow t-subgroups
and (st,|G : Ig(a)]) = 1.

Step 7. If F < N < G with st | [N|, then N = G.

Proof. Since FF = F(N), we have r C I(N). If N < G, the theorem follows
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by induction. Thus N = G.

Step 8. G/F = Sy/F x H/F for Sy := SF and some H < G. Also

|So/F| = |5|j“—3~

Proof. Now So/F <1 G and ST < Cg(S) by Step 6. Thus O{»H(G/F) <
Cao(So/F). By Step 7, So/F < Z(G/F). Thus G/F = SF/F x H/F for
some H < G. Now Sy/F = S since s { |F|. Finally Step 7 implies that
|So/F| = s.

Step 9. H/F (= G/So) has a unique maximal normal subgroup L/F. Also
|[H/L| =t and ¢t4|L/F|.

Proof. If So < J < G, then Step 7 implies that ¢ { |J/So|, whence ¢ | |G/ J|.
By the solvability of G/Sg, it follows that G/Sy has a unique maximal
normal subgroup K/So, t{|I{/So|, and t = |G : K|. Since H/F = G/S,,
this step follows with L =HNK.

Step 10. (a) If A € Irr (F/F") is not S-invariant, then Ig(A)/F contains
exactly one Sylow t-subgroup of G/F.

(b) If 1 ¢ € Irr (F'), then Ig(p)/F contains exactly one Sylow ¢-subgroup
of G/F.

Proof. (a) We note that A is S-invariant if and only if A is Sp-invariant
because F'S = Sp. Assuming that A is not S-invariant, we have that every
7 € Irr (Sp|A) satisfies s | 7(1). We may thus assume that t { x(1) for

all x € Irr(G|A), as otherwise the conclusion of the theorem is satisfied.

Since 7 1 |G/F|, we have that A extends to A* € Irr (Ig(A)[A) (see Theorem

0.13). Consequently Gallagher’s and Clifford’s Theorems (0.8 and 0.9) imply
that 8 +— (BA*)€ is a bijection from Irr (Ig(A)/F) onto Irr (G|A). Thus
t1|G : Ig(\)| and Ig(\) contains a Sylow t-subgroup of G. Furthermore,

-t p(1) for all B € Irr (Ig(A)/F) and Ito’s Theorem 13.1 yields that Ig(A)/F

has a normal Sylow t-subgroup. This proves (a).
-

. i
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(b) Let 1 # o € T (F'). Then F < Ig(y) because ' < Z(F). If
6 € Irr (F|yp), then r | 6(1). Consequently t1x(1) for all x € Irr (G|6). Re-
peat the argument of the last paragraph to conclude that I6(8)/F contains
exactly one Sylow t-subgroup of G/F. Observe that 15(8) < Ig(p) because
F' < Z(F). Because r |G/F|, we may apply Lemma 0.17 to conclude there
exists 0* € Irr (F|y) such that Ia(0%) = Is(p). Part (b) follows.

Step 11.

(a) Suppose that F/F' = A/F' x B/F' with A, B <9 G. Then A = F
or B =F',
(b) F= P, 5]

(c) F/®(F) is a faithful irreducible G /F-module.

Proof. (a) Suppose not. By Gaschiitz’s Theorem 1.12, S 2 §y/F acts faith-
fully on F/®(F) and also on F/F'. Without loss of generality, S does not
centralize B/F' and we may choose 8 € Irr (B/F") that is not S-invariant.
By Step 10, I(14 x B)/F = Ig(B)/ F contains a unique Sylow t-subgroup

To/F of G/F. For a € it (A/F"), Ig(a x ) = I(a) N Ig(B). Thus a x A

is not S-invariant, and by Step 10, we must have Ty/F < Ig(a). Thus T,
fixes all & € Irr (A/F"). Then To/F centralizes A/F by Proposition 12.1.
Hence H/F = OYG/F) < Ca/r(A/F")

If S does not centralize A/F', the same argument repeated with A and
B interchanged implies that H/F < Cgs,r(B/F"). This then implies that

1 # H/F centralizes F/F", contradicting Gaschiitz’s Theorem 1.12. So

S and H/F centralize A/F' = F/B. Consequently, F/B < Z(‘G/B) and
[F, S|F' < B.

Since F' < [F,S|F' < B, we may apply Fitting’s Lemma 0.6 to as-
sume without loss of generality that B = [F,S]F" and A/F' = Cr/r(S) =
Cr/r(So/F). Since S centralizes F'* < Z(F), we see that [A, F,S] <
[F',S] = 1 and [S, A, F] < [F',F] = 1. By the Three Subgroups Lelﬁm;
(F,S, 4] = 1. Since B = [F,S]F' < [F, S)Z(F), we have that [4,B] =1. |

We next observe that B < Z(F). Siuce F/B < Z(G/B), it follows that

%‘ G/B = F/B x J|B where J/B € Hall,«(G/B). Since |G/J] is.a power

of r, certainly s, t € I'(J). If B is non-abelian, then r € I'(J) because

4 B < J. Then the inductive hypothesis yields p € Irr (J) with p(1) divisible

by at least two primes in {r,s,t}. The desired conclusion would then follow
because J 4 G. Hence B is abelian. Because [4,B] = 1 and F' = AB, it
follows that B < Z(F).

Now [F, H] < B < Z(F) and consequently [F, H,F] = 1 = [H, F, F]. By
the Three Subgroups Lemma, [F,F,H] = 1, i.e. H centralizes F', contra-
dicting Step 6 (i). This contradiction yields part (a).

(b) By Fitting’s Lemma 0.6, write F'/F' = Cp/p(S) x [F/F',S]. Since
(F/E'S) = F'[F,S]/F', part (b) follows from part (a) or S-centralizes
F/F'. But S = Sy/F does not centralizes F//F' by Theorem 1.12 and so
(b) follows. h

(c) Now F/®(F) is a faithful completely reducible G/F-module by Theo-
rem 1.12. To prove (c¢), we may assume that F/®(F) = Ag/®(F)x By/®(F)
for Ag, Bo 94 G and Ay, By > ®(F). Repeating the arguments of the first
two paragraphs of part (a), we may assume that S centralizes A¢/®(F).

Then F'[F,S] < By < F, contradicfing (b) and completing this step.

Step 12. F/F' is an irreducible H/F-module. In particular, ®(F) = F' =
Cp(S) = Z(F).

Proof. “ Assume not and let F' < E < F with E 9 H. Choose 1 # ¢ €
Irc (E/F"). Since r { |H/F|, Lemma 0.17 implies there exists an extension

' . &* € Irr (F/F') of € such that ¢* is invariant in Ig(€). Then Iy (€) = Ig(€*).

By Step 11 and Fitting’s Lemma, the principal character is the only S-

invariant irreducible character of F'/F'. By Step 10 (a), Ig(ﬁ;)/F contains
exactly one Sylow t-subgroup Ty /F of G/F. By Step 8, T/ F < OtI(G/F) =
H/F. If X € Irr (F/E), then Aé* extends ¢ and Iy (A¢*) S\IH({;') = Iy(€*).

1
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By Step 10, ‘we must have that T stabilizes Aé* and also A. Since this is
true for all A € Irr (F/E), T\ / F centralizes F/E. Since OY(H/F)-= H/F,
infact H/F centralizes F'/E. Then Cp/p(H/F)# 1. Now H/F A G/F,s0
that Fitting’s Lemma 0.6 and Step 11 (a) imply that H/F centralizes F'/F'.
This contradicts Theorem 1.12, because H/F # 1. This step is complete.

Step 13. (a)-F/F' is a faithful irreducible L/F-module.
(b) H/F is a Frobenius group with cyclic Frobenius kernel L/F'.

Proof. Now V := Irr (F/F') is a faithful irreducible H/F-module by Step
12 and Proposition 12.1. Let 0 # W be an L-submodule of V and let
0 # w € W. By Step 12, w is not S-invariant and so, by Step 10 (a), w is
centralized by a Sylow t-subgroup 74/F of H/F. Then W is stabilized by
LT, = Handso W = V. Thus V is an irreducible L-module. Part (a)

follows via Propo‘sition 12.1.

Now each A € V is centralized by a Sylow t-subgroup of H/F and

OY(H/F) = H/F. 1f V is a quasi-primitive module, Theorem 10.4 im-

plies conclusion (b) or that ¢ =3 = char (V) = r. Since ¢ and r are distinct,
we may assume that V is not quasi-primitive. By Theorem 9.3, there exists
D/F 9 H/F such that Vp = Vi@---®V, (n > 1) for homogeneous compo-
nents V; of Vp that are transitivel$ permuted by H/D. Furthermore, D/F
transitively permutes the elemerits of V; \ {0}. So [Vi\ {0}| | |H/F|. Since
S centralizes H/F, S permutes the V;. By Glauberman’s Lemma 0.14, S
fixes V;. Since Cy(S) = Cy(So/F) =1, s | [Vi \ {0}|. Then s | |H/F]|, a
contradiction. Part (b) holds.

Step 14. |F/F'| = |F'|.

Proof. Since F' is a minimal normal subgroup of G and Sy < Cg(F?), in
fact F' is an irreducible H/F-module, as is Irr (F'): For 1 # A € Irr (F),
Iy(A\)/F contains a unique Sylow t-sﬁbgroup of H/F by Step 10 (b). Since
H/F is a Frobenius group, we must have that Ir;(A\)/F € Syl((H/F). Since
OY(H/F) = H|F # 1, H/F acts faithfully on F'. Since Iy(\)/F €
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! Syl,(H/F) and L/F = O!(H/F), in fact F' is a faithful irreducible L/F-

just as in Step 13 (a)). Now F/F'" and F' are faithful irreducible
L/ F-modules in characteristic 7. Since L is cyclic, |F/F'| = |F'| by Example
2.7.

Step 15. If U < F', then F'/U = Z(F/U).

Proof. Set Z/U = Z(F/U) > F'/U. Since U is S-invariant, so is Z. Let
1 # ¢ € Irr (F'/U). For ¢ € Irr(F|yp), we have that » | 6(1). T?‘xen 6
is S-invariant, since otherwise the conclusion of the theorem is satisfied.
Thus the unique irreducible constituent of 87 is S-invariant and extends ¢.
Applying Gallagher’s Theorem, every.« € Irr (Z/F') is S-invariant. Thus S
and Sp/F centralize Z/F'. Step 12 imples that Z = F', as desired.

Step 16. Conclusion.

Proof. Fix z € F\ F' and let Y = [F, z]. Now Yz is central in F/Y and
Y < F'. By Step 15, Y = F'. Since F' < Z(F), the map g — lg,z] is
a h—(;momorphism of F onto F' = [F,z]. Thus |[F/Cp(z)| = |F'| = |F/F'|
by Step 14. This is a contradiction because F' = Z(F) < Cp(z). This

completes the proof of the Theorem. |

The assertion of the theorem above is wrong if G is not solvable. To see

1 this observe that F(PSL(Q,QI)), f > 2, has three components. Namely the

ordinary character degrees of PSL(2,2 ) are 1, 2f.—1', 2f and 2/ +1 (see [HB,
Theorem XI, 5.5]). . As another example, consider the group PSL(2,11),
which has the following graph (see [HB, Theorem XI, 5.7]):

3—2—5 - 11

18.8 Corollary. Assume that G is solvable.
(a) Then diam (I'(G)) < 3.
(b) IfT(G) has two components 'y and Ty, then both are regular graphs.
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Proof. (a) If not, I'(G) contains a shortest path of length 4, say

for (distinct) primes p, ¢, r, s, ¢. By Theorem 18.7, two of the vertices D, r
and ¢ must be connected, a contradiction.

(b) Let p € T'y and ¢, » € 5. By Theorem 18.7, d(q,7) < 1. Thus Iy is

regular. Likewise, I'y is regular. o

g

Solvable groups with two components cannot be too complicated. For
such G, the nilpotence length must be between 2 and 4. We will prove this
in Theorem 19.6, whose proof gives much more information about such &
. On the other extreme, we do not know of a solvable group whose graph

has diameter 3. But the sumple Janko group J1 does have diameter 3. The

N N,
ANy

But even this seems rare. Consulting The Atlas of Finite Groups [CCNPW],
many simple groups have regular graphs.

The graphs I'(A4s) and I(PSL(2, 8).)‘each have 3 components. It is true
that n(I'(G)) < 3 for arbitrary G, a theorem due to Manz, Staszewski, and

Willems [MSW]. In Corollary 19.8, we show that a minimal counterex

ample
to this theorem is simple.
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§19  Coprime Group Actions and Character Degrees

We begin this section by proving an interesting Theorem 19.3 of Isaacs

(Is 9]. Suppose that H acts non-trivially on N, (|H|,|N|) = 1 and H fixes
{ every non-linear character of N. Then N is solvable (without appeal to the
| classification of simple groups) and the nilpotence length of N is at most

| two. More can be said regarding the structure of N, see Theorem 19.3.

We‘a,pply Isaacs’ Theorem 19.3 and Theorem 12.9 to study solvable

groups G whose graph I'(G) has exactly 2 components, i.e. there exists

a “non-trivial” set m of primes such that each x(1), x € Irr (G), is a =-
| number or 7'-number. The structure of such groups G is very limited (c.g.
{ dI(G/F(G)) < 4 and the nilpotence length n(G) is 2, 3, or 4).

We close this section with another application of Theorem 19.3. If G is

i non-solvable, then n(I'(G)) € maxgn(I'(E)) as E ranges over non-solvable
| composition factors of G. This result employs the Ito-Michler Theorem

{ 13.13 for non-solvable groups and thus relies upon the classification of simple

groups.

We begin with two lemmas. In Lemma 19.1, we do not assume that P
acts faithfully on Q.

19.1 Lemma. Let P be a p-group of class ¢l (P) < 2 and suppose that P
acts on some non-trivial p'-group @ such that Cp(z) < P' foralll # z € Q.

Then P acts fixed-point-freely and is either cyclic or isomorphic to (Js.

Proof. We argue by induction on |P|. First assume that P does not act
fixed-point-freely on (). Then there exists 1 # = € @ such that Z :=
Cp(z) # 1. Since Z < P' < Z(P), Z is normal in P. Let C = Cqg(2).
Then z € C and P/Z acts on C'. Now if y € C'\ {1}, then

Cp/z(v) =Cp(y)/Z < P'/Z2 = (P/Z),

and the action of P/Z on C satisfies the hypotheses of the Lemma. By the



inductive hypothesis, P/Z acts fixed-point-frecly on C. Also P/Z is cyclic
or P/Z = Qg. In the first case, clearly P has to be abelian, contradicting
1 # Z < P'. In the second case, we may'take subgroups A and B of P,
such that P = AB, Z < AN B and such that both A/Z and B/Z are
cyclic of order 4. Consequently, A and B are abelian, AN B < Z(P) and
|P : Z(P)| < 4. This forces |P'| <.2 and since 1 # Z < P', we conclude
Z = P' and Qg = P/Z is abelian, a contradiction. Hence P acts fixed-
point-freely on (). Because every abelian normal subgroup of P is cyclic
and cl (P) < 2, either P is cyclic or P & Qg (see Corollary 1.3). O

The next result generalizes earlier results of A. Camina [Cm 1].

19.2 Lemma (Isaacs [Is 9]). Let I be a proper normal subgroup of G
and assume that G/ is nilpotent. Suppose that cach conjugacy class of G

outside of I{ is a union of cosets of I{. Then
(i) G is a Frobenius group with kernel I(; or

(i) G/K is a p-group for some prime p; also G has a normal p-comple-
ment M and Cg(m) < K foralll#m e M.

Proof. (1) For ¢ € G\ K, we claim that |Cg(g)| = ICG/K(Kg\)]. To see
this, note that by our hypothesis, the conjugacy class clg(g) is the union of
exactly those cosets of I which constitute the class clg)(Kg). It follows
that

|G : Ca(g)| = lcla(g)| = | K|lclg i (K9)| = [K|(G/K) : Cguc(Kg)l,

which at once yields the claim.

(2) Let g € G\ K and let k € Cg(g). Then g is conjugate to gk and so \

o(kg) = o(g). Since kg = gk, o(k) l o(g).

- (3) Suppose first that G splits over I, i.e. there'is some subgroup U of
G such that G = KU and K NU = 1. If u € U \ {1} then (1) yields

|Cu(u)| = |Cqr(Eu)| = |Cq(u)],

[

and so Cg(u) < U. It follows that G is a Frobenius group with kernel I

and assertion (i) holds.

(4) Suppose now' that G does not split over K. We wish to establish
assertion (ii) and we assume that G/K is not a p-group for any prime p. We
can choose, therefore, z € G\ K such that Kz € Z(G/XK) and o(Kz) = pq
for primes p # ¢. We may assume that z = zy = yz with = a p-element, y
a g-element and z, y € (2) N[G\ K]. If k € Ck(z), then (2) implies that
o(k) ‘ (o(z),0(y)). Thus Ck(z) = 1. Let C = Cg(2). Then KNC =1
and |C'| = |Cq/x(K2)| = |G/ K|, where (1) is used again and the fact that
Kz € Z(G/K). Consequently G = K C and G splits over I{, a contradiction.
This shows that G/K is a p-group.

To prove the second assertion of (ii), we fix P € Syl,(G) and claim that
PNK < P'. Let z € P \ K with Kz € Z(G/K) and let Q = [(P,2] < I
Since [G,z] < K, we have Q < PN K. As |P/Q| = |Cp/q(Qz)| £ (33€3]
(see [Is, Corollary 2.24]), we obtain by (1) that

|P/Ql£|CP(Z)\5\CGC(Z)I‘—‘ICG/Z(KZ)|=|G/K|=IP/(PﬂK)lSIP/QI-
and hence Q@ = P N K. We have shown thatl
PNK=Q=I[Pz] <P,

and the claim holds. We have thus established the hypothesis of Tate’s
Theorem (see [Hu, IV, 4.7]) and G has a normal p-complement M.

Finally, let 1 # m € M and suppose that Cg(m) ¢ K. Choose g € G\ K
centralizing m and note that |Cg(g)| = |Cq/x(I{g)] is a p-power. Thus
O

Cq(g) is a p-group and cannot contain m.

Suppose that I acts on N and (|H|,|NY) ="1. It is a consequence of the
Glauberman-Isaacs correspondence that the number of H -invariant conju-
gacy classes of N equals the number of H-invariant irreducible characters of

N. When H is solvable (i.e. when the Glauberman correspondence applies),
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this is Theorem 13.24 of (Is]. The more general case appears as Lemma 5.5
of [Wo 2]. The next theorem of Isaacs does not really require that H be solv-
able (and Isaacs did not assume that). We only use the solvability of H to

quote [Is] for the aforementioned consequence of character correspondence

19.3 Theorem (Isaacs
ﬁ)L:eS every non-linear irreducible character of N. Assume (IN|,|H]|) = 1.
Set-M = [N, H|. Assume H js solvable. Then
(a) N'=M". .
(b) One of the following occurs:
(i) N is abelian;
(ii) M is a p-group of class 2 and N' <Z(NH); or
(iii) M is a Frobenius group with Frobenjus kernel M.

In all cases, N' is nilpotent by Thompson’s Theoremn [Huy, V, 8.7).

Proof. Since N'M is H-invariant, H permutes Irr (N'M).

(1) If & € Icr (N'M) and N’ # ker(a), we claim that « is H-invariant.
To see this, let y € Irr (N]a) and note that x(1) > 1. By our hypothesis X
is H-invariant. Since H centralizes N/N'M, Lemma 0.17 (¢)

is H-invariant.

shows that o

(2) Let 1 # v ¢ Irr (N'). We show that v cannot extend to p* €
Irr (N'M). Otherwise Gallagher’s Theorem 0.9 and (1) imply that v* and
Av* are H-invariant for all \ ¢ Irer (N'M/N"). Consequently, H fixes all
A € Ier(N'M/N') and H centralizes N'M/N' (see Proposition 12.1). By )
Fitting’s Lemma 0.6, N/N' = N'M/N' x Cnyni(H). Hence N'M/N' =1
and M < N'. Then H fixes every linear character of N and thus all char-
acters of N. This implies that H centralizes N (see Lemma 12.2), a contra-
diction. The claim holds.

(3) We next prove assertion (a). Observe that N'/(N'nM
factor of N'M/(N'NM)

) is a direct
and therefore every v € Irr (N') with N'nM <ker()

(Is 9]). Suppose H acts non-trivially on N and |

i
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extends to N'M. By (2), this can only happen for the trivial char]a,cter of
N’ and thus N'N M = N', ie. N' < M. Finally, if v € Irr (V') with
M' < ker(tlx), then v extends to M = N'M, since M/M' is abelian. Again
by (2), the only possibility is v = 1, and this shows M' = N', proving (a).

)

(4) We next prove (b). Because N' = M' and N'M = M, step (1) yields
that every non-linear character of M is H-invariant (i.e. the action of H on
M satisfies the hypotheses). Because (|N|,|H|) = 1, we have that [M, H] =
(N,H,H] = [N,H] = M. Hence Cp/pr(H) = 1 and 1ps is the only H-
invariant linear character of M. Thus the number of irreducible characters
of M that are not H-invariant is |M : M'| — 1. By a consequence of the
Glauberman correspondence (see Theorem 13.24 of [Is]), |M : M'|~1 is also
the number of conjugacy classes of M that are not H-invariant. If « ¢ M',
then clps(2) € M'z because M/M' is abelian. Since Crym(H).= 1, we see
that neither M’z nor clp(z) is H-invariant. Since M has only |M : M'| -1
non H-invariant conjugacy classes, it follows that M'z is a single conjugacy

class of M whenever z ¢ M'.

If M' = 1 then M is abelian and assertion (b) holds. If, on the other
hand, M = M’, then (1) yields that H fixes all irreducible characters of
M. By Lemma 12.2, H centralizes M, contradicting the non-triviality of
the action of H on N. We may therefore assume that 1 < M' < M.

We have now established the hypotheses of Lemma 19.2 (with M and M'
in place of G and K). If M is a Frobenius group with kernel M', we are
done. We may therefore assume that M/M' is a p-group for some prime
p, that M has a normal p-complement Q < M' and that Cp(z) C M' for

1#z€Q.

We claim that [M', H] < Q. To see this, work in the semi-direct product
G = MH and consider a chief factor U/V of G with Q <V < U < M".

Since M/Q is a p-group, U/V < Z(M[V). Let 1 # X € Irr (U/V), hence
A(1) = 1. Let further x € Irr (M|A). Then xy is a multiple of A and we have

"1 M'" & ker x. Thus yx is non-linear and hence H-invariant. It follows that \ is
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H-invariant and therefore I fixes all elements of Irr U/v). Consequently ‘
sshows that @ is nilpotent. Let Q/L be a chief factor of G. Since P = M/Q
facts fixed-point-freely on @, @/L is a faithful irreducible module of G/Q..

[U,H] < V. Since H thus centralizes all chief factors of G between @ and
' 3 .
M, the coprime action of H on M implies that [M', H] < Q, as claimed,

Since we now have [M', H, M) < [@, M] < Q and [M, M',H] < [M',H] <

@, it follows by the Three Subgroups Lemma, [Hu, 111, 1.10) that [M', M] = ¢

1
(H M, M'] < Q. Let P ¢ Syl,(M), so that P = M/Q has class at most 2.

We next prove the} result when Q = 1. In this case, M is a class two

p-group and so N' = M!' < Z(M). By Fitting’s Lemma 0.6, N/M' = |

M/M' x C/M', where C/M' = Cpyypp(H). Since [M,C] < M' < Z(M)
we hz?ve that [M,C,M] =1=C, M, M]. By the Three Subgroups_Lemm;
[Hu, TIL, 1.10], M’ < Z(C). Since N = MC, indeed N' = Jf' < Z(N)
By the next to last paragraph, [M' H] < Q = 1. Thus M' < _Z(NH).
Conclusion (b) holds. We thus assume that Q# 1. | B |

NowQSM’SM,.QP:MandPﬂQ:L Hence P! = M'N P. For ¢

1# 2z € Q, we have that Crp(z) € M’ and so Cp(z) < P'. Now Lemma |
19.1 applies to the action of P on Q. Thus P acts fixed-point-freely on;Q || pon-linear ireducible character of V. JT([H],IN[) = 1, then IV-is solvable

and either P is cyclic or P = Qs.

First assume that P is cyclic. Thus M' = Q > Cum(z) for all 1 #z€Q
Since @ #.1, then M is a Frobenius group with kernel M'. Conclusion (b)

1s then satisfied. So we now assume that P 2 Qg

Now M'/Q has order two. Clearly we may assume that H acts faithfully
on N and also on M. If 1 # Ho < H, the action of Hy on N satisfies
the hypotheses of the theorem. The proof of part (a) shows that N/ =
M' = [N, H,)'. But IM'/Q| = 2 and M/Q = Qg. Tt thus follows that
[N,Hy] = M and H, acEs non-trivially on M/M'. Hence H acts faithfully
on M/M'. Since M/M' & Z, x Z, and (IH|,|M]) = 1, we have thai; |H| =3
and G/Q = MH/Q = SL(2,3).

thap. v e
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Since P acts fixed-point-freely on @, Thompson’s Theorem [Hu, V, 8.7],

Let 1 # A € Irr(Q/L) and 6 € Iir (M|X). Since M' ¢ ker(d), 6 is H-

finvariant. By Lemma 0.17, some M-conjugate of A is H-invariant. Thus A

is fixed by one of the four Sylow 3-subgroups of G/Q. Indeed, I()\)/Q €

1Syla(G/Q) for each 1 # X € Irr (Q/L). Now |Q : L| = ¢™ and |Cq,(H)| =
‘{q’ for a prime ¢ and integers m, I. Since each 1 # A € Irr (Q/L) is fixed
by exactly one Sylow 3-subgroup of G/@, we have that ¢™ — 1 = 4(q" —1).

Now [ ] m and it easily follows that ¢™ = 9. This is a contradiction, because

(1H|,|M]) = 1. The proof is complete. a

As mentioned before Theorem 19.3, the solvability of H is not really

4 necessary in that theorem. In our first application, Theorem 19.6, I will

i be abelian. Our second application uses the next corollary.

19.4 Corollary. Suppose that H acts non-trivially on N and fixes every

{ In fact, N' is nilpotent.

1§ Proof. Without loss of generality, H # 1 acts faithfully on N. The hy-

| potheses are met by every non-trivial subgroup of H and so we may assume

{1 H to be cyclic. Now Theorem 19.3 shows that N’ is nilpotent. O

We next apply Isaacs’ Theorem 19.3 along with Theorem 12.9 to inves-

| tigate solvable groups whose graphs have two components. Initial study

i of groups whose graphs have more than one component was initiated by

Manz (Mz 1, 2|. Manz and Staszewski [MS 1] showed solvable groups G

1 with two components must have nilpotence length n(G) < 5. Palfy, in cor-

i| respondence, has announced n(G) < 4 and when n(G) = 4, G/Z(G) is a
! {2,3}-group. We have yet to see Palfy’s proof, but we prove below (Theo-

# rem 19.6) that n(G) < 4 and dI(G/F(G)) < 4. More information about G
1 is evident from the proof of Theorem 19.6. We have seen above (Corollary

S
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18.8) that the two components of I'(G) are regular.

We also mention one example before proceeding with the proof.’ Let H
be the semi-direct product of Z3 x Z; and GL(2,3). If A is abelian and
G = H x A, then T'(G) has two components, namely {2} and {3}. Also
n(G) = 4 = dI(G/F(G)). 1t is convenient to first isolate, in a lemma, one of

the arguments needed in the proof of Theorem 19.6.

19.5 Lemma. Suppose thgt M is a normal Hall r-subgroup of G = o™(@)
and G/M is abelian. Assume that M is a Frobenjus group with Frobenius
kernel M'. If V is a finite faithful irreducible G-module such that Cg(v)
contains a Hall n'-subgroup of G for each v € V, then there exists 0 # w € V

such that Cg(w) does not have a normal Hall 7'-subgroup.

(1M : M'|,|M']) = 1. Let H/M' be a Hall m'-subgroup of G/M', so that
G=MHad M'=MnNH. Since F(G) NM. =M, it follows F(G)/M' is
a 7'-group. The hypothesis on centralizers implies that O, (G) centralizes
V, whence F(G) is a 7-group. Thus F(G) = M'. Now M/M' and G/M are
non-trivial abelian groups. Because O™(G)=G, H 4 G and n(G) = 3.

Proof. Since M’ is the Frobenius kernel of M, then M' = F(M) and also

Now V is a faithful irreducible G-module and Cg(v) contains a Hall 7'-
subgroup of G for each v € V. Since n(G) = 3 and O™(G) = G, Corollary
10.6 implies that V is not a quasi-primitive G-module. Choose C' « G
maximal such that V¢ is not homogeneous and write Vg = Vi@ ---@V, for
homogeneous components V; of Vo with n > 1. By Propositionl 0.2, G/C
primitively and faithfully permutes {Vj,... yVa}. Since O™(G) = G, we
apply Theorem 9.3 to conclude that:

(i) G/C =4 D5, DlO or AF(23);
(il) n=3,5,0r 8 (respectively); and
(ii) p=2,2,0r 3 (respectively) is the unique 7'-prime divisor of 1G/C].

Furtinepmore char(V) =2 if p = 2, by Lemma 9.2.
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We claim that C is a 7-group. For 0 # v; € Vi, we may assume that
Cg(v1) contains a Hall n'-subgroup S of G and that $ < Cg(vj). Now SNC
is the unique Hall n’-subgroup of C¢(v1) and is a Hall 7'-subgroup of C. If
v; € Vi# for i > 2, then Ceo(vi+++++v,) <Cgq(v1) and Ce(vy + -+ + vy)
contains a Hall n'-subgroup of C. Hence SN C must centralize vy + - -+ +vp,.
Since these were arbitrarily chosenz SN C centralizes Vo + -+ + V,,. Now
fix 0 # vy € V5. Then, repeating the above arguments, S N C is the unique
Hall ©'-subgroup of C centralizing v, and SN C centralizes V;. Thus SN C

centralizes V, whence S = 1 and C is a w-group.

Now C' < M and it follows from (i), (ii), (iii)-above that M/C is the
unique maximal normal subgrk)up of G/C and |G : M| =p. Also G/C has a
unique minimal normal subgroup L/C with ‘L/CI =n. Also M = L when
p=2, and |[M/L| = 7 when p =-3.

We designate a prime ¢ by letting ¢ = 7 when p = 3 and letting t = n,
when p = 2. We now prove the lemma in the case ¢2 { |G]. Then a Sylow
, Vu} non-trivially and we may find a
,0) that is centralized by T'. But w is
also centralized by a Hall 7n'-subgroup of G. When p =3, LCg(w) = G and

t-subgroup T of G permutes {V;,...

non-zero vector w = (wy,... ,w,;,0,...

when p = 2, CCg(w) = G. Thus Cg(w) has a non-abelian factor group of
order 21 when p =3, or Cg(w) has a factor group isomorphic to Dy, when

p = 2. Since p is the only #'-divisor of |G|, it follows that Cg(w) does not

" have a normal Hall 7'-subgroup, as desired. The lemma holds when t*  |G].

Set |Vi| = ¢™ for a prime ¢ and integer m. We next prove the lemma
when ¢™ = 3% or 3. Here 7{|GL(m,q)|, whence 71 |C/Cc(V;)| for each 1,
and 7 {|C|. Since char(V) # 2, p = 3 and thus ¢t = 7 is an exact divisor of
|G|. In this case, the lemma follows from the last paragraph. So we assume

that g™ # 3% or 3*.

First suppose that p = 2. Then M' < C. Since M' = I'(G), indeed
M' = F(C). Now C < M < Cg(M/F(C)) < Cg(C/F(C)), and Lemma

9.10 (b) yields that C = F(C) = M'. Since (|[M : M'|,|M']) = 1, then
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n = |M: M'|is an exact divisor of |G| and the lemma follows when § Proof. Whenever J is a nilpotent group, I'(J) is a regular graph. Since
n(I'(@)) = 2, G is not nilpotent. Thus F» > F' and we choose a prime p
; dividing |F2/F|. Since p I |G/F|, indeed p € T(G). Parts (i) and (ii) follow.

Finally, we assume that p = 3. Here (M/C) =L/Cand |M:L|=7=t |
] . - . . . ' “
If M'" = L, we argue as in the last paragraph that ¢ is an exact divisor § By definition of 7, the degree of an. irreducible character of G is a -

of |G|, as desired. So we thus assume that M’ < L < M. Since M/C is number or 7'-number. Also, if N < G and 6 € Irr(N), then 6(1) is a

non-abelian, M’ £ C'. Then L = M'C because L/C is a chief factor of G, . m-number or w'-number. This fact is used repeatedly in the proof.
and hence M' N C < M'. Because M' N C < M' < L < M and M s |

th.:hFiobemus 1’(erm:,1 of M, the group L/M' N C must be a Frobenius group ‘ For ¢ > 2, it follows from Lemma 18.1 (see comments preceding the
with kernel MI/M'0 €, This is a contradiction, because LiM'nC) = § theorem) that there exists f; € Irr(F;) such that 8;(1) is divisible by every

C ! ! 1 A
[(M'NC)yx M'|(M'n C). O § prime divisor of |Fj/F;_{|. Thus F;/F;_, is a w-group or n'-group.

p=2

We define characteristic subgroups F(G) iteratively by letting Fo(G) =1 J Step 2. Choose m maximal such that Fy,/F is a m-group. Then

and Fi11(G)/Fi(G) = F(G/F(G)). So Fi(G) = F(G) and n(G) is the
smallest n for which F,(G) = G. '

(1) Fy41/F,, is an abelian 7'-group; and

(i1) G/Fm41 1s an abelian w-group. .

Let Y/F(G) = Z(F3(G)/F(G)). By Lemma 18.1, there exists-n € Irr(Y) !
with n(1) = Y : F(G)|. If 7 ¢ Irr(FL(G) , n), then 7 is divisible by
every prime divisor of |Fy(G)/F(G)|. Hence, for each i > 2, there ex-

| Proof. Since m > 2 (see Step 1), there exists a non-linear 7 € Irr(Fp)
with 7(1) a m-number (by Lemma 18.1). If { € Irr(G|7), then £(1) must
. i 1 : 1

ists 7; € Irr(Fy(G)) such that (1) is divisible by each prime divicor of 1 be a m-number. By Theorem 12.9, G/F,, has an abelian Hall 7'-subgroup.
lFi(G)/Fi—J(G)I and F;_,(G) < ker(7;).

i Since Frnq1/Fm is a w'-group by Step 1 and since- Co(Frm41/Fm) < Fruga
y by Lemma 0.19, Fi,41/ Fn must be an abelian Hall n’-subgroup of G. This

. ' roves (i) and that G/F,,4, is a 7-group.
19.6 Theorem. Suppose G is a solvable group, whose graph has (exactly) P (i) | [ Fmt1 group

two components. Then
(i) 2<n(G) < 4, and
(i) di(G/F(G)) < 4.

~

4 By Lemma 18.1, there exists a non-linear 7 € Irr(Finyq) with n(1) a «'-
number. Since G/F,,41 is a m-group, each p € Irr(G|n) must extend 7. It
# follows from Gallagher's Theorem 0.9 that G/Fy, 4, is abelian.

Step 3. Let P € Hall(F) and Q € Hall.(F).

Proof. We let F; = Fi(G) and set F = Fl- ( ) . Q |
(1 hen P or () is abelian.

Step 1. (i) G is not nilpotent.
(i) Choose a prime p | |F2/F|. Then p € = for a component 7 C I'(G). an abelian 7'-group. Also @ is a class two group.
,’(m) Foreach i > 2, F;/F;_ isa m-group or a 7'-group. In particular R/F

s a T-group.

(i) If @ is non-abelian, then F3/Q is an abelian 7lr-g1'oup, and G/ I, is

Proof. Part (i) is immediate, because F is nilpotent and the degree of every
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irreducible character of F' must be a 7-number or 7'-number.

We assume that () is non-abelian and choose 8 € Irr(Q) with (1) # 1.
Every x € Irr(G|@) must be of n'-degree and so Theorem 12.9 implies that
G/Q@ has an abelian Hall m-subgroup. Since Q < F' < F}, since Fy/F is a n-
group and Cg(F,/F) < F,/F (Lemma 0.19), it follows that F,/F contains

a Hall m-subgroup of G/F. So F3/Q is an abelian Hall m-subgroup of G/Q.
By Step 2, G/F; is an abelian n'-group.

We must prove that cl(Q) = 2. Let D € Hall(Fy) so that D is abelian.
Then D = F3/Q acts on Q) and fixes every non-linear character of Q. Now Q
is nilpotent and thus contains no Frobenius group. Since @) is non-abelian,
Theorem 19.3 implies () is a class two group, as desired, or that Fy/Q acts
trivially on Q. In the latter case, F; = D x . Since D is abelian, F is

nilpotent, a contradiction as F; > F. This step is complete.
Step 4. If G/F is a m-group, then G/F is abelian. In this case, dl(G) < 3.

Proof. Since n(I'(G)) = 2 and G/F is a m-group, @ must be non-abelian.
Now Step 3 (ii) shows that G/Q is an abelian m-group and dI(Q) < 2.

Step 5. (i) m = 2.

(il) F»/F is an.abelian group or is a class 2 nilpotent group.

Proof. By Steps 4 and 2, we may assume that m > 3 and Fyq1/Fp, is
a non-trivial abelian x'-group. Since (1) is m-number or 7'-number for
7 € Irr(Fp41) and since Fy, /Q is a m-group, every non-linear irreducible
character of F},/Q is invariant in Fi,4;. Applying Theorem 19.3 to the
action of a Hall 7'-subgroup H/Q of F41/Q on Fin/Q, we conclude that
one of the following occurs:

(a) F,,/Q is abelian.

(b) F,/Q is nilpotent of class two, or

(c) There exist normal subgroups Q < K < M < Fy, of G such that
M/Q is a Frobenius group with kernel K/Q = (M/Q)" = (F,./Q)".

S
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Also M/Q = (Fr/Q, H/ Q]

In cases (a) and (b), F»/Q is nilpotent. But Q < F < Fy < Fin. Thus
m = 2 and this step follows in these cases. We assume (c) holds and adopt

that notation. -

We let J = MH. Now Fon /M = Fpu/M x JIM and J = O"(li‘mfl,)\:
Also K < M and [M/K,HK/K] = M/K because the order f)f HI&/!"\ =
H/Q is coprime to that of M/K. Now K/Q is the Frobenius kerne? of
M/Q and thus K/Q = F(M/Q). Also K/Q = F(J/Q) beca‘use R/Qis a

T-group.

By Step 3 (ii), we can assume that Q is abelian. If Q@ < Z(I), then
K is indeed nilpotent, whence K < F. Since F,./K is abelan, both ?on—
clusions hold in this case. We may thus assume that I £ CM(Q) Since
(1Q\,1K/Ql) = 1, we may choose a chief factor Q/Q1 of G th.at is not cent'ral
in . Let V = Irr(Q/Q1). Since K & Cp(V) and K/Q is the Frobenfus
kernel of M/Q, we also have that M/Cpm(V) is a Frobenius group with
ECu(V)/Cu(V) = (M/Cp(V)) and that o™(J/C4(V)) = J/C (V)
because O™(J/Q) = J/Q. H1# A € V, then X extends to In(N), because
(1M : QL,1Q1) =1 But In()) < M and so each 1 € Irr(J|\) has degree
divisible by a prime in 7. So n(1) is a m-number for all n € Irr(J|A). Hence
I;(\) contains a Hall 7-subgroup of J and A extends to a € Irr(I5(}))
(see Proposition 0.12). Then fa € Trr(I;(N)) for all B € Ire(1(N)/Q)-
Thus B(1) is a m-number for all. B € Irr(1,(N)/Q), whence I_]()\,)/Q has a
normal Hall m'-subgroup. So I;())/Cy(V) has a normal Hall 7r -subgroup
U/CsV) € Halli(J/C 4(V)) for all non-zero A € V. Applying Lemma )

19.5, we get a contradiction, completing this step.

Step 6. Conclusion.

Proof. B}} Step 1, n(G) > 2. By Step 5, m = 2 and dl(F/F) < 2. By Step
2, n(G/Fy) < di(G/F,) £ 2. Hence n(G) < 4 and d(G/F) <4. O



We give another application of Theorem 19.3 in the following reduction
theorem for graphs of non-solvable groups. The proof is dependent upon
the classification of simple groups, because the Ito-Michler Theorem 13.13

is applied to a non-solvable group.

19.7 Theorem. Suppose that K,L < G and 1 # K /L is a direct product of
simple non-abelian groups. If G/K is solvable, then n(I'(G)) < n(I'(K/L)).

Proof. We argue by induction on |G|. Since Z(K/L) = 1, we have that
KCg(K/L)/Cg(K/L) is G-isomorphic to I{/L. Without loss of generality,
we may assume that Cg(IK/L) = L.

First assume that K = G. It suffices to show that each ¢ € I'(G)\T'(G/L)
is connected in I'(G) to some prime in I'(G/L). By Remark 13.13, I'(G/L) =
7(G/L). So,if 6 € Irr(G) with ¢ | 9(.1), we can assume that 8, is irreducible.
Choose § € Irr(G/L) non-linear. Then 6 € Irr(G) and g is connected in
['(G) to some prime in I'(G/L). Hence we may assume that K < G. -

We may choose K < N 9 G with |G/N| = p, a prime. If I'(G) =
(), then n(T(G)) < n(I'(V)) and we apply the inductive hypothesis. So
we can assume that I'(G) = T'(N) U {p}, p € I'(IV), and that x(1) = p
whenever x € Irr(G) and p | x(1). In particular, G/N fixes every non-linear
character of N. Since p ¢ T'(N), the Ito-Michler Theorem 13.13 implies

that O,(N) € Syl,(N). A Sylow p-subgroup P of G acts non-trivially on

N/O,(N), because Cg(K /L) = L. Applying Theorem 19.3 to the action of

Pon N/O,(N), we get that N/O,(N) is solvable, a contradiction. o

19.8 Corollary [MSW]. If G is non-solvable, then
A(1(G)) < mgxn(T(B)),

as E ranges over the non-solvable composition factors of G.

In addition to the above reducﬁtion, Manz, Staszewski and Willems used

the, classification of simple groups to show that n(I'(S)) < 3 for every simple

ve that here, but just state the consequence of that

group S. We do not pro
result and Corollary 19.8.

19.9 Theorem. For every group G, n(I(G)) < 3.

§20 Brauer Characters — the Modular Degree Graph

in i 1 i S to a
is section, we again investigate Brauer characters with respect

(G) with vertex set

In th
prime p. We construct a graph Ty

{q l q prime,q l (1) for some p € IBr,(G)}

and make a graph by connecting distinet g1, q2 € Tp(G) if q1q2 | n(1)

for some 7 € IBr,y(G). Asin the previous sections, we denote by d(-,-) the

natural distance function on I'p(G). Also diam(T,(G)) .
and n(I'p(G)) the number of connected components of T,(G).

denotes the diameter

We start with an easy result, which is similar to Theorem 18.4. We will

. . o the next
implicitly use Proposition 14.4 throughout this section (including the n

Proposition).

20.1 Proposition. Suppose that G has

group G/K. Then one of the following occurs.
(i) n(Tp(G)) =1 and diam(T'p(G)) < 4; or
(ii) n(I'»(G)) =2 and diam(T,(G)) £ 2.

Proof. Choose I{
mimic the proof of Theorem 18.4, using

solvable group, we need the follow

Lemma 18.3).

a non-abelian solvable p'-factor

< N < G maximal such that G/N is non-abelian. Then
that IBr,(G/N) = Irr(G/N). O

To obtain bounds for n(I',(G)) and diam(T,(G)), where G is an arbitrary
ing modular analogue of [Is, 12.3] (see also

g

N

3
EEN—
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20.2 Proposition. Assume that N < G is maximal with respect to G/N

having a non-linear irreducible p-Brauer character. Then the following

hold:

(i) G/N has a unique minimal normal subgroup M /N and M /N is not
a p-group. ’ ’
(i) G/N has a normal subgroup K/N > M/N such that K/M is a
p-group and G /I is an abelian p'-group.
(i) If M/N is non-solvable, then Cg/n(M/N) = 1.

(iv) If M/N is solvable, then M/N is an elementary abelian r-group for
a prime v % p. Furthermore, G/M acts faithfully on M/N or G/N

is a non-abelian r-group.

Proof. First observe that every irreducible Brauer character of a group
H is linear. if and only if H' is a p-group. If N < L < G, then each
¢ € IBrp(G/L) is linear and so OP(G') < L. But G/N itself has a qdn—
linear Brauer character, so that O?(G') £ N. Hence G/N has a unique
minimal normal subgroup M/N (namely OP((G/N)')) and M/N is not a
p-group. Set I/M € Syl,(G/M). Then K/N < G/N, and G/K is an

abelian p’-group. This establishes assertions (i) and (ii).

Let C/N = Cg/n(M/N) A G/N. By the first paragraph, either C =N

or M < C. Part (iii) thus follows and we may assume that M/N is an
elementary abelian r-group for a prime r $# p. If J/M is a characteristic
subgroup of C/M and r {|J/M|, then J/N = M /N x D/N for some D 4 G.
By the uniqueness of M/N, D = N and J = M. Hence r divides the order
of every non-trivial characteristic subgroup of C/M. Since G/M has a
normal p-subgroup K/M with abelian factor group G/K, it follows that
C/M is an r-group. To prove (iv), we may assume that G/C is not an
r-group. Consequently, the normal subgroup H/M € Hall,(G /M) is non-
trivial. Observe that H/M acts coprimely on C'/N and faithfully on M/N
and [M/N,H/M] = M/N. On the other hand, H/M centralizes C/M.
Therefore M/N ¢ ®(C/N) and C/N is abelian. By Lemma 0.6, C/N =
}W/N x Ceyn(H/M). By the uniqueness of M, we conclude Co/n(H/M) =
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1, whence C = M.

Our next result shows that for solvable G, n(I'p(G)) < 2and diam(T,(G))

< 5. In fact, the sum of the diameters of components is at most 5.

20.3 Theorem. Let N < G be maximal such that G/N has a non-linear

irreducible p-Brauer character. If G/N is solvable, then
(a) n(T3(G)) <2
(b) diam(T,(@)) < 5; and |
(¢} if n(TH(G)) =2, then diam(T,(G)) < 3 and at most one component

has diameter 3.

Proof. We may assume that every p'-factor group of G is abelian, since
' “, . -y . ‘) M
otherwise the Tesult follows from Proposition 20.1. By Proposition 20.2, G

has normal subgroups M and I with N < M < K such that the conclusions.
a : <

* of Step 1 are satisfied.

Step 1. (a) M/N is the unique minimal normal subgroup of G/N and is an
elementary abelian r-group for r # p.

(b) K/M is a non-trivial p-group.

(c) G/K is an abelian p'-group, and

(d) G/M acts faithfully on M/N.

Step 2. p € T, (K/N).
Proof. The assertion is an immediate consequence of Step 1 (a, b, d).

Step 3. Le.t § € IBr,(G) with (6(1),pr) =1, and let y be a prime such that
y | 6(1). Then d(y,p) <2, and if y } |G/IK], then even d(y,p) = 1.

Proof. Let 1 be an irreducible constituent of € and observe that ny €

IBr (N) By Step 2, there exists 7 € IBr, (K /N) with p | 7(1). It follows
pUY - . ‘ .. |
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from Lemma 0.9 that 79 € IBr,(K). Thus d(p,z) = 1 for all prime divisors
z of n(1) (if any). In particular, d(p,y) = 1 if y { |G/K]|. If n(1) # 1, there
exists a prime divisor zo of (1) such that d(y, z9) <1 and d(zp,p) = 1. To

prove that d(y,p) < 2, we need just show that 7 is non-linear.

Assume that n(1) = 1, so that K/ker(n) is an abelian p’-group. Since
the irreducible constituents of 8 are G-conjugate, I/ ker(6) is an abelian
p’-group. Since K/M # 1 is a p-group and M/N is the unique minimal
normal subgroup of G/N, this forces ker(fx) = I, i.e. K < ker(6). Since
G' < I, 6 is linear. This contradicts the assumption that y I f(1). Step 3
now follows.

. Step 4. There is at most one prime go such that gy | |G/K| and d(qo,p) > 1.

Proof. Let = = {q | q||G/K|and d(q,p) > 1}. If 1 # X € IBr,(M/N) =
Irr(M/N), then p I £(1) for every ¢ € IBr,(G|A), because G/M has a normal
p-subgroué K /M # 1 that acts faithfully on the irreducible G/M-module
M/N. In particular, X is centralized by a Hall w-subgroup of G/M.

Let H/K = O™ (G/K) = 0,(G/K). Then Irr(M/N) = M,®- - -&M, for
irreducible H/M-modules M;. Let C;/M = Cy/p(M;). Then N_,Ci=M
by Step 1 (d). Since the C; are G-conjugate, |H/C;| is divisible by every
prime in 7. By the last paragraph, each A € M; is fixed by a Hall w-subgroup
of H/C;. Since H/C; is a m U {p}-group, Lemma 18.6 (b) implies |r| < 1.

Step 5. We may assume that I',(G) is connected, that » € I',(G) and
diam(l‘,;(G)) <3+d(p,r). "

Proof. Let y € T',(G). By Step 3, d(y,r) <1 or d(y,p) < 2. In particular,

I',(G) has at most two components, and ‘assertion (a) of the theorem holds.

If yo € T',(G) is chosen such that d(yo,r) > 1and d(yo,p) = 2, then Step
3 yields that y l |G/I|. Hence Step 4 implies that there exists at most one
i
such prime yp.

i
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If T')p(G) has two components I'; and I', we may assume without loss
of generality that r € Ty and p € I Consequently diam(T;) < 2 and
diam(T2) < 3, by, the last paragraph. This proves assertion (c) of the

1 theorem.

To complete éhe proof of the theorem (i.e. part (b)), we may assume that
i(T,(G)=11Ir¢ T',(G), then Steps 3 and 4 yield that' diam(T',(G)) < 3.
We may finally assume that r € I',(G). By Step 3, diam(T,(G)) < 2+
d(p,r) + 1. This step is complete.

“Step 6. Conclusion.

Proof. It remains to prove that diam(T,(G)) < 5. We may assume by Step
5 that n(T,(G)) = 1, but d(p r) > 2. Consider a shortest path betwcen p
p H )

i and r, say

- —o—9o - —0——8

p . ur U2 U1 T

'7‘ where d(p,r) = . By Step 5, we assume that [ 2 3. Suppose at first that

I > 4 and choose 8 € IBr,(G) such that usus | 6(1). Then (8(1),pr) =1

4 and Step 3 yields d(p,u3) <2, a contradiction. Hence I = 3, and it remains
i1 to show that each ¢t € PP(G)A\ {p,m,u1,u2} (if any) has distance 1 either
* to p or to r. If not, then Step 3 yields d(t,p) = 2 and t | IG/K|. Choose

n € IBr,(G) such that u uz | n(1). Therefore (n(1),pr) = 1 and Step 3
implies ug ] |G/K|, a contradiction to Step 4. This completes the proof of
O

the theorem.

We next bound n(Fp(é)) for p-solvable groups G. Qur proof however

relies on Remark 13.13 and Theorem 19.9, which have not been proven

here.

20.4 Corollary. Let G be p-solvable. Then n(Tp(G)) < 3.

Proof. We take a maximal normal subgroup N of G and assume by induc-

tion that T'y(NV) has at most three connected components. Suppose that

_—




%‘

VST,
[ |

Tk

SRR R R i

R

264 MODULAR GRAPH Sec. 20

n(Ty(G)) > 3.

We first consider the case |G/N| = r for some prime r. If r ¢ T,(G) or
r € I',(N), we are clearly done. We may also assume that r is an isolated
point in I',(G). Hence there exists f ¢ IBr,(G) with 8(1) = r and so
Bn = M+ -+ Ay, where Ai(1) = 1. Set L/N" = O,(N/N'). Then
L < ker(B) and G/L is non-abelian. Since N/L is abelian and G/L is
not, we may choose L < M & @ with N/M a g-group for a prime ¢ with
G/M non-abelian. By definition of L, q # p. Possibly ¢ = r. Thus there
exists 7 € IBr,(G/M) of degree r. By assumption, there is a component
A of T'(G) such that r, ¢ ¢ A and we consider ¥ € IBr,(G) such that the
prime divisors of 1(1) belong to A. As (¥(1),|G/M]) = 1, we conclude that
Yy € IBry(M) and o7 € IBr,,(G’) (see Lemma 0.9). This shows that r € A,

a contradiction.

We may thus dssume that S := G/N is a simple non-abelian p'-group.
As IBry(S) = Irr(S), Theorem 19.9 yields that n(Ip(S)) < 3 and Re-
mark 13.13 shows that I',(S) consists of the set of prime divisors of |S].
Should n(T',(G)) > 3, there exists ¢ IBr,(G) such that 7(1) > 1 and
(r(1),18]) = 1. '

derive a contradiction and complete the proof. O

Then 7y is irreducible and we again use Lemma 0.9 to

If G is not p-solvable, there is no universal bound for n(I',(G)) indepen-
dent of G and p.

20.5 Example. For an odd prime p, the p-Brauer characters of SL(2,p)
have degrees {1,2,3,... ,p—1,p} (see [HB, VII, 3.10]). It follows from the
Prime Number Theorem that the number of primes between p/2 and p tends
to infinity. Hence

lim sup (', (SL(2, p))) = oo.
p—oo

This section is based on [MVVW].V

Chapter VI
7-SPECIAL CHARACTERS

§21  Factorization and Restriction of w-Special Characters

For p-solvable groups G, the Fong-Swan Theorem (Cor. 0.33) states that
each ¢ € IBr,(G) can be lifted to some x € Irr (G). Isaacs [Is 4, 5] showed
the existence of a “canonical” lift. An important role in this lift is played
by “p'-special” characters. For a set of primes w, we xﬁay likewise define
“r-special” characters, which were developed by Gajendragadkar [Ga 1]
and Isaacs [Is 6]. Let G be w-separable. "Then any primitive 3 € Irr (G)
necessarily factors 1 = 11, as a product of a m-special character 1; and
m'-special character 1,. Furthermore for H € Hall,(G), restriction defines
an injection from the set of m-special characters of G into Irr (H). This
concept yields a powerful tool for studying problems in the character theory
of solvable groups. Then namecly any primitive character y factors y =
HP Xp as.a product of p-special characters x,, each of which very much
“behaves” like an irreducible character of a p-group. We use this approach

in Section 22, where we give a proof of a conjecture of W. Feit. "

Recall that when 1 € Char (@), then the order of the linear character
det(n) is denoted by o(n). For convenience, we restate Theorem 0.13, which

is of central importance here.

21.1 Lemma. Suppose that N 4 G, § € Irr(N) is invariant in G and
(o(6) - 6(1),|G/N|) = 1. Then there is a unique extension x of 8 to G

satisfying (o(x), |G/N|) = 1. In fact, o(x) = o(f).

Recall that x is called the canonical extension of 6 to G. Whereas unique-

ness of x is easy to see, it is more difficult to prove existence.
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We n(?w state the definition of these “magical” mw-special charaeters.

21.2 Definition. We say that y € Irr (G) is m-special if
(1) x(1) is a - number, and if

(ii) o(f) is a m-number for all subnormal § << G and all irreducible

constituents d of Xs.

We write X,(G) to denote the set of m-special characters of G.

?1.3 Remarks. For arbitrary G and X € Xx(G), the following facts are
immediate;

(1) N 99 Gandp ¢ Irr (N) is a constituent of XN, then p € X (N).

(i) XA (G)NXp(G) = {1g}.

(ili) I NJdGand € X «(N), then 89 € X =(N) for all g € G.

(iv) If E 2 Q(x) 2 Qs a Galois extension of @ and 0 € Gal(E/Q),

" then x? € X,(G).
(v) If G is a m-group, then' X, (G) = Irr (G).
(vi) fGisa %r'—group, then X, (G) = {14}.

The following lemma is a generalization of (v) and (vi) above.

214 Lemma. Let M <@, let§ ¢ Xx(M) and x € Irr (G|6). Assume that
(1) G/M is a m-group, or
(2) G/M is a n'-group and o(x) - x(1) is a 7-number.

Then x € X,(G).

Proof. We first show that also under hypothesis (1), o(x) - x(1) is a =-
number. Write yas = e(0y & 4+ ¢) for an integer e and characters 8;
Irr(JM) that are G-conjugate to 4. By 21.3 (m) i € Xr(M). Now x(1 )=
etd(1 I |G /M8(1), and x(1) is a m-number. Also the order of det(x)m =
det(xar) = []5_ (det(6;))¢ is a n- number Thus both M/ ker(det(x)as) and
G'/]V[ are w-groups, and therefore o(x)

well! This establishes the claim.

|G/ ker(det x)| is a 7-number as

A\

rags. v T . Coe E
Clrags. A A .
.

Observe that by the last paragraph it suffices to show that whenever N
is a maximal normal subgroup of G and ¢ € Irr (V) is a constituent of x,
then in fact ¢ is 7r—specia1-. Since N is a maximal normal subgroup of G,
either M < N or MN = G. We argue by induction on |G| and assume first
that M < N. If hypothesis (1) holds, then induction immediately implies
that ¢ € X.(N). Suppose next that hypothesis (2) is valid. Since x(1) is a
m-number, x extends 6 and ¢. Consequently, o{p)p(1) is a m-number, and
induction again yields that ¢ € X, (N). We may assume that MN = G.

Without loss of generality, Opran and g pran have a common irreducible
constituent s; otherwise namely replace ¢ by a suitable G-conjugate and
apply 21,3 (iii). Since § € X, (M), also u € X(M N N). Under hypothesis
(1), N/(MNN) = G/M is am-group, and induction implies that ¢ € X.(N),
as desired. It thus remains to consider hypothesis (2), where N/(N N M) is

a 7'-group.

Now o(p) - p(1) is a m-number, because y is m-special. Also (1) | x(1)
is a m-number, and since N/(N N M) is a n'-group, ¢y = g By Lemma
21.1, we let ji be the canonical extension of 1 to N. By Lemma 0.9, ¢ = A
for some linear character A\ € Irr (N/(M N N)). Note that M centralizes
N/(M N N), and so ¢™ = A(1)™ for all m € M. This implies that ¥y =
FA(per+- - -+p), where f-lis a m-number, and y; € Irr (V) are M-conjugates
of fi. In particular, ;(1) = (1) and o{p;) = o(ji) = o(p). Now

det(xn) = b1 Hdet i)

=1 .
Since o(y;), f -1+ p(1) and o{xn) are m-numbers, so is o(A). But A €
Irr (N/(MNN))and N/(MNN)is an'-group. Consequently, A =1,p =1

and o(y) is a w-number, As g € X.(M N N), the inductive hypothesis

implies ¢ € X (N), as desired. O

We next sum up what we know about restriction and induction of -

special characters. If N J G and 8 € Irr (N), we set X,(G|8) = Irr (G|9) N

XA(G).

— 1 1 1 _
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21.5 Proposition. Let N 4G, y € X+(G) and ¢ € X.(N).
(a) Every irreducible constituent of XN is m-special.
(b) If G/N is a n'-group, then xp is irreducible and X Is the canonjcal
extension of y .
(¢) If G/N is a m-group, then X(Gle) = Irr (Glyp).
(d) IfG/N is a n'-group, then X"(Glcp) is non-empty if and only if ¢ is

G-invariant. In this case, Xx(Gle) = {p}, where ¢ is the canonical

extension of p to G.

Proof. Part (a) was already mentioned as Remark 21 3 (i), (b) is an im-

mediate consequence of the definition of m-special characters and (c) follows
from Lemma 21.4.

For (d), first suppose that 1 ¢ Xx(Glp). Since G/N is a 7'-group and
(1) is a m-number, ¥y = ¢ and Ig(p) = G. Conversely suppose that
© € X(N)is G-invariant. Since o()-¢(1) is a m-number, ¢ has a canonijcal
extension ¢ to G with o(¢) = o(y), by Lemima 21.1, Since o(@) - ¢(1) is

a m-number, ¢ € X.(G|p), by Lemma 21.4. As we have scen above, every

% € Xa(Gle) must extend ¢, and clearly satisfies (o(1)), |G/N|) = 1. By

the uniqueness statement of Lemnma 211, Xo(Glp) = {3}). O

We continue with a fact which was first observed by Gajendragadkar, and

which was the starting-point for many rather recent results about m-special

characters.

' 21.6 Theorem (Gajendragadkar). Let G be a m-separable group with

a, a1 € X (G) and B, fy € Xx(G). Then
(a) af € Irr (G), and
(b) if af = oy fy, then a = ay and § = g,.

Proof. We argue by induction on |G|. Let M be a maximal normal sub-
group of G. Without loss of generality, G/M is a w-group. In particular,
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and £; must restrict irreducibly to M and so Bar, (B1)ar € X (M).

Let ¢ be an irreducible constituent of ays, so that ¢ € X (M). By
the inductive hypothesis, w8 € Irf(M). Clearly, I(p) < Ig(wBnr). For
z € Ig(eBu), we have that ¢* € X (M) by Remark 21.3 (iii), and also
@ Br = (pBm)® = ©Pm. Applying the uniqueness part of the inductive
hypothesis, p* = ¢, and so Ig(p) = Ic(tpﬂh4). By Lemma 0.10, af €
Irr (G).

Say ¢ = ¢1,...,¢, are the distinct irreducib%e constituents of aps. Then,
by induction, the ;8¢ are irreducible and distinct. Observe that the ;8
(1 £ < t) are the distinct irreducible constituents of («f)y. Likewise, if

“q1,...,7s are the distinet irreducible constituents of () ar, then v;(81)

(1 < 5 < s) are the distinct irreducible constituents of (a181)ar. Since
af = ayfiy, it follows that {pify | 1 <1 <t} = {y;(B)u |1 <7 < s}
Of course i, 7; € Xx(M) and By, (f1)m € X (M). Tt thus follows by
induction that Sy = (B1)m. Since g, f1 € X (G|Am) and G/M is a =-
group, we obtain f#; = f, by Proposition 21.5 (d). Now «ff = a;f and a,
c.xl € Irr (G|g). Therefore Lemma 0.10 yields « = oy, proving (b). O

We next show that a primitive character y of a w-separable group has a
unique factorization y = af with o € X,(G) and.f € X(G). In order
to give a straightforward inductive argument, we use a weaker primitivity

condition in the hypothesis and so get a stronger statement. -

21.7 Theorem. Let y E Irr(G), and suppose that there is a norinal series
1=My< M <My < M, =G such that M;/M;_, is a 7~ or ©'-group
and that ypr, is homogeneous for all . Then x factors uniquely as x = af

with a € X(G) and f € Xo(G). .

Proof. We ax'glle by induction on |G| and set M = M, _;. Now y = eu

for an integer e and g € Irr(M). Because ppy is homogeneous for all

¢ < n —1, the inductive hypothesis implies that p = vé where v € X (M)

" and § € X (M). Furthermore, this factorization is unique. Because p is
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G-invariant, so are v and P (see 21.3 (iii)).

Without loss of generality, G/M is a m-group. Since § € X (M) is
G-invariant, there exists a unique 8 € X(G|é) and By = 6 (see Propo-
sition 21.5 (d)). By Lemma 0.10, x = «ff for some a € Irr (G|y). Since
G /M is a m-group, Proposition 21.5 (¢) implies X(G|y) = Irr (G|y). This
gives the existence of the factorization. Uniqueness follows from Theorem
21.6. .

By a trivial induction argument, we can deduce the following result from
Theorem 21.7. Note that by Berger’s Theorem [Is, 11.33], the notions of

primitivity and quasi-primitivity coincide for solvable groups.

[
21.8 Corollary. Let G be solvable and let x € Irr (G) be primitive. Then
X = HP Xp with uniquely determined x, € X,(G).

21.9 Proposition. Suppose that G = MH with M < G. Assume that

@ € Irr (M) and opnp € Iim(M N H). If Iglp)NH = Iy(emny), then .

X + xu defines a bijection from Irr (G|y) onto Irr (H|@apan).

Proof. Let I = Ig(p), so that IN H = Ix(p). Note that M N(INH) =
MNH and M(INH) = INMH = I. In particular, if I < G, induction yields
that 1 +— ¥ n defines a bijection from Irr (I|¢) onto Irr (IN H|¢ pran ). By
our hypothésis, In(eman) = IN H, and Clifford correspondence implies
that ¥ — (1/1[nH)H is a bijection from Irr(I|p) onto Irr(H |y pmap). Because
IH =G, (Yran)? = %) u (cf. [Is, Ex. 5.2]). So ¥ = (4C)y is a bijection
from Irr (I|p) onto Irr (H|papny). Again by Clifford correspondence, 1 -
w'G defines a bijection from Irr (I|¢) onto Irr (Gly), and the result follows
when I < G. Thus we assume that ¢ is G-invariant angL.cpMnH is H-

invariant.

Because ¢ € Irr (M) is G-invariant,

(0%, 0% =050l = [IG : M|, o] = |G/M].
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Likewise, we have [(_(pMnH)H,(tpMnH)H] = |H/(M N H)| =|G/M|. Write
0@ = Y. a;xi with a; > 0 and distinct x; € Irr (Glp). Then

1G/M| =%, 9% = di.

Since G = MH, ¢ = (¢man)™ (cf. [Is, Ex. 5.2]). Thus

S0 = G/M] = [(prnn)"s (rem) ] = leF 0]

=1 ailxi)ms yas00)m) = Zzaiaj[(Xi)H’(Xj)H]'

i j
Consequently, [(xi)u, (X;)n] = bij, 1.e. (xi)u € Irr (H) and (xi)u # (Xj)u

for ¢ # 5. Since (emam)? = Y ;ai(xi)u, the map x = Xn is a bijection
from Irr (G|p) onto Irr (Hlp pan)- 0

21.10 Theorem. S’uppose that G is w-separable and H < G has 7'-index.
Then x +— x g defines a 1-1 tnap from X(G) into XA (H).

Proof. We may assume that H is a maximal subgroup of G. Set M =
O™ (G) By Proposition 21.5 (d), x = X is an injection from X, (G) into
X (M). Now M N H has 7'-index in M, because M 4 G. If M < G,
we apply the inductive hypothesis to X (M) and see that x — Xmnu is
an injection from X.(G) into X.(M N H). In particular, x — Xy Is an
injection from, X,(G) into Irr (H). For x € X (@), the character xy €
Irr (H) extends xpmnu € X-(M N H). Since/.f{\/(M N H) is a n'-group and
o(xH) I o(x) is a m-number, in fact xy = (XMnn) is the canonical extension
of xmnn. By Proposition 21.5 (d), xg € XA(H), and the theorem liolds

i should M < G.

We may now choose N < G with G/N a non-trivial w-group. Then
NH = G and N N H has «'-index in N. By the inductive hypothesis,
¢ — @Nau is an injection from X.(N) into X(N N H). In particular,
Ic(p) N H = In(e) = In(enan) By Proposition 21.9, x + XH defines
a bijection from Irr (Gl¢) onto Irr (Hlpnan). Since G/N = H/(N N H)

—
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is a m-group, Proposition 21.5 (c) yields that Irr (Gle) = X.(Glp) and
Irr (Hlenan) = Xo(Hlonan). Consequently x +— xy defines a 1-1 map
from X(Gle) into X(H|enan), given ¢ € X«(N). By Proposition 21.5
(a) and the injectivity of ¢ — ®NnH, restriction is a 1-1 map from X ,(G)
into X, (H). o

We let Qf be the field Q(e) obtained by adjoining a primitive f*" root
of unity ¢ to Q. This is of course independent of the choice of . For
¥ € Char (G, we have Q(+) C Qg where g = exp(G).

21.11 Corollary. Let G be w-separable, H € Hallo(G) and x € X.(@).
Then Q(x) = Q(xn) C Q) where h = exp(H).

Proof. The Galois group Gal(Q)|/Q) permutes both Irr (G) and X,(G)
(see 21.3 (iv)). If o € Gal(Q(x)/Q(xx)), then (X‘\’)H = (xu)° = xn. Since
by Theorem 21.10, x + xp is an injection from X,(G) into X, (H), it
follows that x” = x. Thus ¢ = 1 and Q(x) = Q(xn) C Q. : O

§22  Some Applications — Character Values and

Feit’s Conjecture

As in the previous section, we let Q,, denote the cyclotomic extension of
Q generated by a primitive nt® root of unity. If x € Irr (G), then Q(x) C Q,
where g is the exponent of G. Set f = f(x) to be the smallest integer with
Q(x) € Q. Generalizing a question of R. Brauer, W. Feit cé)njectured that
G necessarily has an element of order f. While Gow [Go 3] established the
conjecture for groups of odd order, later Amit and Chillag [AC 1] extended
this to solvable groups. Ferguson and Turull [FT 1] then gave another proof
using factorizatign of primitive characters. With further use of the results
of Section 21, Isaacs found an even slicker proof, which we present here

with his permission. Due to further results of Ferguson and Turull, Feit’s
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¢onjecture also holds provided that the non-solvable composition factors of

G satisfy certain conditions. For arbitrary G however this conjecture is still

open.

A related question is how large can |Qy : Q(x)| be, where again f = f(x)?

| One would expect this to be small. For linear characters X, obviously this
is 1. Cram [Cr 1] proved for solvable G and arbitrary x € Irr(G), that
} |Qf : Q(x)| divides x(1). By using p-special characters, he gave a second

and much shorter proof [Cr 2], which we present. This result certainly does
| not extend to arbitrary G, as is evidenced by Ajs (see discussion following

Theorem 22.3).

We start by considering Feit’s conjecture. In a minimal counterexample,
,‘ x € Irr (G) is rather easily seen to be primitive and thus the factorization

i techniques of Section 21 apply.

22.1 Theorem. Let x € Irr (G) with G solvable. Let f = f(x). Then G

has an element of order f.

Proof. We argue by induction on |G|. If x = € for some § € Irr (H) and -
H < G, then Q(x) € Q(8) € Q4. In particular, Q‘f C Qy(p) and thus
f I f(B). By the inductive hypothesis, there exists y € H with o(y) = f(8).
Since f l f(B), we may choose z € (y) with o(z) = f. We may thus assumne.

that x is primitive.

By Corollary 21.8, we may uniquely factor x = HpEA o, where the prod-
uct is taken over the set A of all prime divisors of |G| and where each o, is
p-special. Let g be the exponent of G. For o € Gal (Q,/Qy),

x=x"= (] &)= ] (e

PEL PEA

Since (a,)7 € X,(@) (cf. 21.3 (iv)), it follows from the uniqueness of the
factorization that (a,)” = a, for all p € A. Hence Q(a,) C Qy and
flay) \ f. By Corollary 21.11, Q(e,) € Qy, where h,, is the exponent of a
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Sylow p-subgroup of G. Consequently f(a,) | h, is a p-power. If 7 is the
set of prime divisors of f, then 7 C A because f l |G|. For pe A\, it

follows that f(e,) = 1 and a,, is rational-valued. We may- clearly assume
that = # @.

Let p € . Observe that the group L := Gal(Qs/Qy/,) is cyclic. In
fact, |L| = p when p? ' f. When p®1{ f, then L = Gal(Q,/Q) and is cyclic
of order p — 1. Let (0,) = L < Gal(Qy/Q). Because Q(x) ¢ Qy/p, we
have x77 # x and so (a4)” # a, for some ¢ € A. By the last paragraph,
f(ag) is a g-power dividing f. If ¢ # p, then Q(ay) C Q) € Qyp/py 2
contradiction because ag” # g and (o,) = Gal(Qy/Qy/,). So ¢ = p and
()7 # .

Next let g € G. We may assume that f { o(g) and thus (o(g), f) l flp

for some p € 7 dependent on g. Now Q(a,(g)) C Qo) N Qs € Qy/p. Thus
()77 (g) = qp(g) for some p € m dependent on ¢.

Now ¥ := [] . ((ap)?” —«,) is identically zero on G. Recall that for each
p € m, ap and (e,)° are p-special characters. Expanding the generalized
character ¥, we get ¥ = 46, & 6, --- + 8; with [ = 2"l characters 6;, each
being a product §; = Hpenﬂp of p-special characters #,. By Theorem 21.6,
6; € Irr (G) for all 1. Furthermore, 8; # 6; for 1 # j, because (&, )% # o, for
all p € 7 and because of the uniqueness of factorization. But ¥ is identically
zero on G, violating the linear independence of the elements of Irr (G). This

contradiction proves the result. . O

22.2 Proposition. Let N 4G, 0 € Irr (N), I = Ig(9), ¢ € Irr(Z]0) and
X =% Let T = {g € G| 69 is Galois-conjugate to 6}. Thén

(2) QU)QO) = Q¥);
(b)) Q) =Q(7); and
(c) I QT and |Q(): Q)| | IT/1].

Proof. Clearly Q()Q(6) € Q). If o € Gal (Q(1)/Q)QB)), then 47 €
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Irr(1]6) and (¥°)¢ = X- Hence ¢° = ¢ and Q(¥) = Q(x)Q(6). This proves
part (a). ‘

Now Q(x) € Q(¢T) because (1,/)71)6 =x.Ure Gal(@(t,/)T)/Q(x)), then

[x,07] # 0 and hence 67 = 9' for some t € T. Now (T)7 lies over 8* and "

also over 8. Since (7)")¢ = x = (¥ T)C, we have that (7)™ = 7. Hence
Q(x) = QT), proving (b).

For t € T, 6' is Galois-conjugate to ¢ and hence I = Ig(8") for all
t € T. Hence I < T and T/I faithfully and regularly permutes the set of
Galois conjugates of 8, although the action is not necessarily transitive. For
o € Gal (Q(¥)/Q(x)), 8 is a constituent of yn and so 8% = 64 for some
t(a) € T. Now t(«) is uniquely determined (mod I). Since Q(¥) € Qi)
then Gal (Q(¢)/Q(x)) is abelian. It is then casy to see that the map « =
I't(a) is a homomorphism. If is in the kernel of the homomorphism, then
« centralizes Q(8)Q(x) = Q(v) by part (a) and @ = 1. So a Tt(a)is
a 1-1 homomorphism, whence Q) : Q(x)| = |Gal (Q(¥)/Q(x))| divides
|T": I|. This proves (c). O

22.3 Theorem. Let x € Irr(G) and f.= f(x). If G is solvable, then
Qs : QU)I | x(1)-

Proof. We argue by induction on |G|. First suppose that N 9 G, 8 €
Irr (N) is an irreducible constituent of xn and that Ig(6) < G. Choose

¥ € Irr (I6(6)]0) with ¥G = y. By the inductive hypothesis, [Qyy = Q).

divides 1(1). By Proposition 22.2, |Q(x) : Q(x)| divides |G : Ic(8)| =

w(1)/$(1). Thus [Qscyy : QO)! | x(1). Since Q(x) € Qs & Qyyy, in fact
|Qy = Q(x)I | x(1). We are done in this case. We may assume that x. is

quasi-primitive.

Let p ‘ |G|. By Theorem 21.7, x = aff where « € X,(G) and § € Xp(G).

. Set a = f(a) and b = f(B). Fix P € Syl,(G) and H € Hall,(G). By

Theorem 21.10 and Corollary 21.11, ap and Sy are irreducible, Qa) =
Q(ap) C Qexp(py 2nd Q(B) = QBr) € Qexpay- In particular, a = f(ap),

.

b

ed
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b= f(Bu) and (a,b) = 1. Since H < G, the inductive hypothesis implies
that |Qs : Q(B)] ‘ B(1). We also claim that |Q, : Q(a)| divides «(1). This
follows via the inductive hypothesis when P < G. Otherwise, o = y is a
primitive character of P = G. In this case, a is linear (see [Is, 6.14]) and
|Q. : Q(a)| =1 = a(1). This establishes the claim.

We next observe that Q(x) = Q(a)Q(B). One containment is trivial. If
on the other hand 7 € Gal (Q()Q(8)/Q(x)), then af = x = x™ = a"B".
Now a” is p-special and A7 is p’-special. The uniqueness in Theorem 21.6

forces a” = a and B7 = f. Thus v = 1 and Q(x) = Q(a)Q(B).

Since (a,b) = 1, we have that Q C Q(a) N Q(B) ~g Q.NQ, =Q a.nd‘

QaQs = Qap- Since all these extensions of Q are Galois,

|QaQs : Q(a)Q(B)] = [Qa : Q)] - Qs : Q(B)].

The right-hand side divides a(1)A(1) = x(1), and thus |Qas : Q(x) ] x(1).
As Q(x) € Qup, it follows that Q(x) C Qy € Qus, which in turn implies
that [Qy : Q(x)| | x(1). O

Now Ajs has two irreducible characters of degree 3, which are Galois-
conjugate (sce [Is, p. 288]). If x is one of them, then Q(x) = Q(v/5) and
X Is rational-valued except on elements of order 5. Consequently, f(x) =5

and |Qy(y) : Q(x)| = 2. In particular, the above theorem does not extend

to arbitrary G.

§23  Lifting Brauer Characters and Conjectures of

Alperin and McKay

Let G be p-solvable. We begin this section by proving (Theorem 23.1)
that x +— x°® (recall that © is restriction to p-regular elements) is a bijection
from X,/(G) onto {¢ € IBr,(G) | ptw(1)}. It is an easy consequence of this
theorem and Corollary 0.27 that every ; € IBr,(G) has a p-rational lift £,
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ie. £ = pand Q(€) C Q(¢) for a primitive n*" root of unity €, p { n. We use
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Theorem 23.1 to prove results about Brauer characters analogous to results
in Section 15 on the McI{ay—-Alperin conjecture for ordinary characters.
For example, if B is a p-block of G with defect D and Brauer correspondent
b € bl(Ng(D)), then B and b have an equal number of height-zero Brauer
characters, i.e. EO(B)' = EQ(I_J). We also show that |IBrp(B)| > |IBr,(b)]. We
close by giving Isaacs’ canonical p-rational lift of Brauer character, p # 2,

and discuss the case p = 2.

23.1 Theorem. If G is p-solvable, then x — X is a bijection from X, (G)
onto {io € IBr,(G) | p1 (1)},

Proof. By induction on |G|. If G is a p'-group, then Xp(G) =TI (G) =
IBr,(G) and the result is trivial. If G is a p-group, then Xp(G) = {l1g} and

the result also follows.

Choose N <1 G such that G/N is either a p-group or p'-group. By the
inductive hypothesis, the mapping 8 + 6° is a bijection from X, (N) onto
{u € IBr,(N) | ptp(1)}. Furthermore (see Remark 21.3 (i11}), conjugation
by G commutes with this bijection. In particular, I5(6) = I5(6°%) for all
6 e X, (N).

If x € X,/(G), then x € Irr(G|8) for a unique (up to G-conjugacy)
§ € Xp(N). If £ € IBry(G) and p 1 £(1), then £ € IBr,(G|u) for a unique
(up to G-conjugacy) p € IBr,(N). Furthermore p{ u(1). Hence, given the
last paragraph, it suffices to fix § € X, (/N) and show that x ~ x° is a
bijection from X,/(G|8) onto {¢ € IBr,(G|6°) | pt (1))

First assume that G/N is a p'-group. By Lemma 0.31, we have that
x — x° is a bijection from Irr (G|6) onto IBr,(G|6°). Since p { |G/N|, we
have that Irr (G|0) = X,/(G|8) by Proposition 21.5. Now p { x(1) for all
X € X,(G|8). Consequently y — x° is a bijection from X (G18) onto
{¢ € IBr,(G|6°) | pt (1)}, as desired.
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We now assume that G/N is a p-group. If I(6) < G, then X, (G|9) =0
because every { € Xp(G) has p'-degree. Since I(6) = I(6°), we also have
that {¢ € IBr,(G|6°) I pte(l)} = @if Ig(d) < G. So we assume that
I6(8) = G. Applying Proposition 21.5 (d), X,#(G|8) = {x} for an extension
y of 6. By Corollary 6.27, IBr,(G|6°) = {7} for an extension 7 of §°. Since
(x")v = (xn)° = 6° is irreducible, x° € IBr,(G|6°), i.e. x° = 7. O

The following cerollary has a slightly stronger statement than Theorem
23.1 does, but it is an immediate consequence of the theorem and Proposi-
tion 21.5 (a).

23.2 Corollary. Suppose that p € IBry(L), that L < G and G is p-
solvable. If p{ (1), then there exists a unique 8 € X /(L) such that ° = p.
Also x — x° is a bijection from X :(G|6) onto {4 € IBr,(G|u) | pt¥(1)}.

Let G be p-solvable. We use Theorem 23.1 to prove the next Theorem
23.5. Part (a) gives a result of Huppert [Hu 1] that states every ¢ € IBr,(G)
is induced from an irreducible Brauer character of p-degree. The proof here
is somewhat different from Huppert’s 1957 proof (which was only for solvable
'G). Part (b) is a result of Isaacs [Is 4] that says ¢ has a “p-rational” lift,
thereby strengthening the Fc;ng—Swan Theorem. (See Definition 23.4 of p-
rational.) Isaacs [Is 4] does obtain Huppert’s theorem for p-solvable G and
also shows that when p # 2, there is a unique p-rational lift. We prove
this uniqueness later. Part (c) gives a modular analogue of a well-known
result for degrees of ordinary characters and those of normal subgroups.
Proposition 23.3, a consequence of Theorem 23.1 and Corollary 0.27, gives

a useful inductive tool. o
23.3 Proposition. Suppose that ¢ € IBr,(G) and 1 = My < M; <--- <

M, = G is a normal series of G such that @y, is homogeneous for each 1.

Assume that M;yy/M; is a p-group or a p'-group for each i. Then p { ¢(1).

Proof. By induction on |G|. We may assume that M,_; < G and we let
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M = M,_,. Let p € IBr,(M) be the irreducible constituent of © SO that
wpm = fp for an integer f. By the inductive hypothesis, p { u(1).

First suppose that G/M is a p-group. By Corollary 0.27, ¢ extends p.
Thus p{¢(1). Hence we assume that G/M is a p'-group,

By Theorem 23.1, there exists a unique § € X,(M) such that §° = p. It
follows from uniqueness that I5(6) = Ig(u). By Lemma 0.31, ¢ = x° for
a (unique) x € Irr(G|8). Since G/N is a p'-group, p { x(1)/6(1) (see [Is,
Corollary 11.29]). Since p does not divide u(1) = (1), we also have that p
does not divide x(1) = ¢(1). ‘ a

23.4 Definition We say that y € Char(G) is p-rational if Q(x) C Q, for
an integer r such that ptr (i.e. p{ f(x))-

Recall that @, = Q(¢) for a primitive r*"-root of unity e. By Corollary
21.11, every x € X,(G) is p-rational. If ¢ € Char(H) is p-rational and
H < G, then Q(1¢) C Q(%) and so ¢ is p-rational.

It is relatively easy to see that each ¢ € IBr,(G) is p-rational (extending
the definition of p-rational to all complex-valued functions on subsets of G).
Indeed, ¢ is only defined on p-regular elements g € G and ¢(g) is a sum of

o(g)*" roots of unity. Consequently, ¢ is p-rational.

© 23.5 Theorem. Let G be p-solvable and ¢ € IBr,(G). Then

(a) There exists H < G and p € IBrp(H) such that u% = ¢ and p { p(1);
(b) There exists a p-rational x € Irr (G) with x° = ¢; and
(c) If M 9 G and « is a constituent of ¢y, then o(1)/a(1) | |G/M|.

Proof. (a, b) By induction on |G|. If p{ (1), then part (a) is trivial and
Theorem 23.1 shows there exists xy € X,/(G) with x° = ¢. By Corollary
21.11, y is p-rational. Thus we assume that p l (1).
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By Proposition 23.3, there exist ' < G and § € IBr,(K) such that
¢ € IBr,(G|8) and I := I5(6) < G. Choose 9 € IBr,(I]§) with ¢ = ¢.
By the inductive argument, there exists H < I and g € IBr,(H) such
that u/ =+ and p { u(1). Since u® = ¢, part (a) follows. The inductive
hypothesis for (b) implies that there exists a p-rational A € Irr (I) such that
A% = 4. Now (A9)? = (A9 = 4% = ¢, hence A\¢ € Irr (G). Also A% is
p-rational because A is. This proves (b).

For (c), arguing by induetion on |G : M| |G|, we may assume that M is a
maximal normal subgroup of G. By Clifford’s Theorem 0.8 and the inductive
hypothesis, « is G-invariant. If |G : M| = p, then ¢(1) = (1) by Corollary
0.27. Hence we may assume that G/M is a p'-group. If p { a(1), it follows
from Corollary 23.2 that ¢(1)/a(1) = x(1)/6(1) for some 6 € Irr (M) and

x € Irr (G|8). Thus ¢(1)/a(1) | |G /M| (see [Is, Corollary 11.29]). Hence we
may assume that p | a(1).

By Proposition 23.3, we may choose N < G with N < M and v €
IBr,(N) such that v is a constituent of ay and Ip(y) < M. Welet I =

’I(;(')/) < G. Choose 1) € IBr,(I|y) and 7 € IBr,(I N M|y) such that ¢ = ¢

and 7™ = a. Since (1/)M1)G = ¢, it follows that ™/ is a constituent of @ar;
(see [HB, Theorem VII, 4.10]). Since « is G-invariant, « is a constituent of
pMIL . But M, = Warar™ (see [Is; Exercise 5.2]) and every irreducible
constituent of ¥ asns lies in Irr (M N I|y). By the uniqueness in Clifford’s
Theorem 0.8, 7 must be a constituent of Ymnr. Applying the inductive
hypothesis, ¥(1)/7(1) divides [I : M N I| = [MI/M|. Now

a(l) = |M : M I|r(1) and $M7(1) = |[MT: I|p(1) = |[M : M 0 I|p(1).
Thus ¥™M1(1)/a(1) equals 1(1)/7(1) and divides |MI/M|. Since (»M1)¢ =

@, p(1)/a(1) | 1G/M]. \ 0

If, in Theorem 23.5 (c), G/M is a p'-group, then there exist p-rational
B € Irr (M) and x € Irr (G|B) such that x° = ¢ and 8° = a. Much of

the motivation of Isaacs’ work [Is 4, 5] on lifting Brauer characters was to

develop a lift that works well with respect to normal subgroups, preferably
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'a “canonical lift”. We discuss this further below, but first present some

modular versions of the Alperin-McIKay conjecture.

We let I(G) = [IBr,(G)| and 1o(G) = |{¢ € IBr,(G) | p { p(1)}]. I

N <G and g € IBr,(N), then we let I(G|u) = |IBr,(G|p)| and

lo(Glu) = |{p € Bry(Glp) | pte(1)/nm(1)}.

Finally, if B is a p-block of G, we let [(B) = |IBr,(B)| and lo(B) be the num-
ber of height-zero Brauer characters of B.' Thus [ counts modular characters

analogously to how k counts ordinary characters.

The following proposition will often be used with Theorem 15.9.

23.6 Proposition. Suppose that G/I{ has -a normal Sylow p-subgroub
M/K', that G is p-solvable and 8 € X, (K) is M-invariant. If § is the
canonical extension of 0 to M, then I(G|6°) = 1,(G|8°) = k(G|9).

Proof. By Corollary 23.2 and Corollary 0.27, {§°} = IBr,(M|6%) and so
IBr,(G|6°) = IBr,(G|6°). Since & is the unique p-special lift of 6°, we
have that I() = Ig(8°). By Lemma 0.31, x = x° is a bijection from
Irr (G16) onto IBr,(G]8°) = IBr,(G|6°). Since p { 6(1)|G/M|, p t x(1)
for all x € Irr(G|6) by [Is, Corollary 11.29]. Hence k(G|8) = 1(G)6°) =

10(G6). O

23.7 Theorem. Suppose that G is p-solvable, N < G, and p € IBr,(N) is
invariant in P, where P/N € Syl,(G/N). Let H/N = Ng,N(P/N). Then

{y € IBr,(Glu) | pt ()} = {o € Br,(Hlu) | p1o(1)}].
Proof. We argue by induction on |G : N|. We assume that p { 4(1). Choose

N < K < @ minimal such that G/K has a normal Sylow p-subgroup. If
K = N, the result is trivial. Without loss of generality, choose N < L < K



such that K/L is a chief factor of G. Since G/K does have a normal Sylew

p-subgroup and G/L does not, K/L is a p'-group.

Let J/L = Ngy (LP/L). Then J < G. If yj € IBr,(L) is P-invariant,
then every J-conjugate of 5 is P-invariant. Furthermore, the Frattini ar-
gument shows that if n, & € IBr,(L) and are P-invariant and G-conjugate,
then n and « are indeed J-conjugate. So we may choose P-invariantn,,...,n
€ IBry(L) such that p { n,(1) for each i and sich that every P-invariant
a € IBrp(L|p) of p'-degree is G-conjugate (equivalently J-conjugate) to
exactly one 7;. (We allow the possibility that there are no P-invariant
n € IBr,(L|u) of p'-degree.)

If o € IBry(G|u) UIBry(J|1) and p{ (1), then o lies over exactly one 7;.
If N < L, the inductive hypothesis yields that ly(Gly;) = lo(J|i) for cach
t. Then

t

lo(Glis) = 3 1(Glni) = 3 oI 1) = lo(J 1)

3 =1
The inductive hypothesis also implies that {o(J|u) = lo(H|y), because J <
G. The result follows when N < L. So we assume that N = L (and H = J).

Now P < Ig(p) N H = Ig(p). If Ig(n) < G, the inductive hypc;thesis
and Clifford correspondence yields that

lo(Glu) = lo(Ia()|p) = lo(Ta(p)|p) = lo(H|p),

as desired. Hence we assume that u is G-invariant.

Now G = KH gnd we let C = K N H. Note that C/N = Cr/n(P).
By Theorem 23.1, p = ¢° for a G-invariant ¢ € X, (L). By Proposition
21.5 (¢) and Lemma 0.31, X, (K|p) = Irr (K|p) and 8 — 6° is a bijection
from Irr (K¢) onto IBr, (K|u). Also Ig(6) = Ig(6°) for each 6 e Irr (K |).
Similarly X, (Clip) = Irr (Cle) and B B is a bijection from Irr (C|y) onto
IBr,(C|p). Observe that ¢ extends to P by Lemma 21.1. By Theorem 15.9,
there is a bijection from {6 € Irr (K|p) | 6 is P-invariant} onto Irr (Cle)
and this map commutes with conjugation by H. Now, if X € IBry(G|p)
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and p { x(1), then x € IBr,(G|6°) for a P-invariant 6 € Irr (K|). Since
G = KH, 8 is unique up to H-conjugacy. Similarly, when 7 € IBr,(H|p),
then 7 € IBr,(H|B°%) for some g € Irr (Clp). Of course B is unique up to
H-conjugacy and note that § is P-invariant by Lemma 0.17. So it suffices
to fix a P-invariant 8 € Irr(f(|<p) and B € Irr (Clp) such that # — § asin
Theorem 15.9 and show that lo(G|6°) = lo(H|B°). Theorem 15.9 (v) says
that k(G|é) = k(C[ﬁ) where § and § are the canonical extensions of § and
B (respectively). Applying Proposition 23.6, Io(G|6°) = lo(H |8°). ]

The conclusion of Theorem 23.7 says that lo(G|p) = lo(H|p) whenever
ptp(1). Is it true that Io(G|u) = lo(H |p) even when p|u(1)? The answer is
yes and we refer the reader to [Wo 7] and the discussion at the end of this

section. In the meantime, we derive some consequences of Theorem 23.7.

23.8 Corollary. If P € Syl,(G) and G is a p-solvable group, then
1(G) = b(Ng(P)).

Proof. Set N =1 in Theorem 23.7. |

We next give the block-wise version of the last theorem. The proof is

similar to that of Theorem 15.12.

23.9 Theorem. Suppose that B is a p-block of a p-solvable group G, that
D is a defect group of B, and b € bl(Ng(D)) is the Brauer correspondent
of B. Then ly(B) = lo(b). ‘

Proof. Argue by induction on |G|. Let K = O,(G). We apply Corollary
0.30. We may choose § € Irr (K) so that B covers § and D < Ig(#).
Let p = 0p(K,D) € Irr (Cg(D)) be the Glauberman correspondent of 6.
Then I N Ng(D) = Ing(p)(p). There exist blocks By € bl(I) and by €
bl (INNg(D)) such that by is the Brauer correspondent of By. Furthermore
there is a height-preserving bijection (character induction) between By and
B. So lg(Bo) = lg(B). Similarly, lo(bg) = lo(b). If I < G, the inductive

e
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hypothesis implies that lo(by) = lo(By). Then l(B) = lo(b), as desired. We
thus assume that I = G, i.e. § is G-invariant.

By Theorems 0.28 and 0.29, IBr,(B) = IBr,(G|f), D € Syl,(G), and
IBr,(b) = IBr,(Ng(D)|u). Observe that KNg(D)/K = Ng(KXD/K). By
Theorem 23.7, we have that lo(B) = [o(G|0) = l,(KNg(D)|8). Triv-
ially, lo(b) = I,(Ng(D)|pn). It suffices to show that [((KNg(D)|8) =
Io(Ng(D)|p). Let § € Ter(KD) and 2 € Iir (CD) be the canonical ex-
tensions of § and p (respectively). By Proposition 23.6, [o(KNg(D)|0) =
K(KNg(D )Ié) and 10(Ng(D)|‘u) = k(Ng(D)|). But on the other hand,
K(ENg(D)|§) = k(Ng(D)|it) by application of Theorem 15.9 (v) with
L =1. Hence l[(,(KNg(D)|0) = l((Ng(D)|r), as desired. O

A conjecture related to the Alperin~-McKay conjecture is Alperin’s weight
conjecture. While we do not state the weight conjecture, we do mention
that it would imply the Alperin-McKay conjecture. Another consequence

would be that I(B) > I(b) where B is a p-block with Brauer correspondent

. b. We next prove this inequality for p-solvable G. We do mention that it has

been widely rumored for many years that Okuyama has verified the weight
conjecture for p-solvable groups, but this has yet to appear in print.

23.10 Theorem. Suppose that G is p-solvable, P/L € Syl,(G/L), and
€ IBry(L) is P-invariant. Assume that p { u(1). If H/L = Ng(P/L),
then I(G|p) > I(H|p).

Proof. We argue by induction on |G : L|. Let I = Ig(u). Then P < I and
Ny(P)= HNI=Iy(p). If I <G, the inductive argument and the Clifford
correspondencé (Theorem 0.8) yield that

() = (Tl > 10T 0 Bps) = (E ).

Thus we assume that u is G-invariant.

Let M/L = O,(G/L). Since u is invariant in G, it follows from Corollary
0.27 that IBr,(M|u) = {c} for a G-invariant ¢ and p }{ o(1). Now L <

Chap. VI 7-SPECIAL CHARACTERS o8

M < P < H and H/M = Ng(P/M). If L < M, we employ the inductive
hypothesis to conclude that

(Gl = U(Glo) > I(Hlo) = (Hu).
The conclusion of the theorem is satisfied in this case. We thus assume that

0,(G/L)=1and G> L.

We now let K/L = O,/(G/L) so that K > L. Observe that KXH/K =
Ng/x(KP/K). By Theorem 23.1, there exists a G-invariant ¢ € X, (L)

© with ¢° = . By Lemma 0.31, § — 6° is a bijection from Irr (I|) onto

IBr, (K |p). In particular Ig(8)
of IBr,(K|u) has p'-degree.

= I5(6°) for 6 € Irr (I{|¢) and every element

If o, v € IBr,(K) are P-invariant and G-conjugate, the Frattini ax'gl,lxnerlt

shows that o and 7 are indeed H-conjugate. Thus there exist P-invariant

0,,...,0, € Irr (I{|¢) such that whenever o € IBr,(K|p) is P-invariant,

" then « is G-conjugate (and H-conjugate) to exactly one 6°.

.+ 15.9 to K H to conclude there exist fi,...

In particular,
for 7 # 7,

IB1,(G|67) N IBr,(G|67) = @ and

IBr, (K H|6]) N 1Bry(KH|6]) = @

By the inductive hypothesis, I(G|0?) > I(IL H|6?) for each 1. Hence

t t

(Glw) > > UGI6Y) >y UK HIE).

i=1 i=1
We observe that ¢ extends to P by Lemma 21.1. We now apply Theorem
B € rx (Clp) = Xp(Clgp) such
that each § € Irr(Cly) is H-conjugate to exactly bne f; and such that
[(8:)c, Bi] # 0. Furthermore part (v) of Theorem 15.9 (with M = KP and
A = 1) and Proposition 23.6 imply for each : that (KHI|6Y) = I(H|BY).

" But each ¢ € IBr,(C|u) is H-conjugate to exactly one g7 and so I(H[/L) =

!
'

Soiy [(H|A?). Combining with the last paragraph,

U(Gp) > Z'I(KHW?) = Zz(HIﬁ?) = I(H ).
=1 =1
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This completes the proof. - g

23.11 Corollary. Under the hypotheses of Theorem 23.10, I(G|) =I(H |j)
if and only if {G|p) = lo(Gp).

Proof. Since pt p(1), we have that 1 = ¢° for a unique ¢ € X,/(L). Since
u and ¢ are P-invariant, it follows from Proposition 23.6 that {(H|un) =
ly(H|u). By Theorems 23.7 and 23.10, we now have that

(i) = lo(H i) = U(Hw) < [(Glw).

The corollary follows. O

The hypothesis that p{ g(1) in Theorem 23.10 and Corollary 23.11 is not

really necessary. See [Wo 7] and the discussion at the end of this section.

23.12 Corollary. Whenever G is p-solvable and P € Syl,(G), then I(G) >

[(Ng(P)). Equality holds if and only if P 9 G.

Proof. Set N = 1 in Theorem 23.10 to obtain I(G) > [(Ng(P)). We
trivially have equality if P 9 G. If I(G) = I(Ng(P)), then Corollary 23.11

yields that I(G) = lp(G). By Theorem 13.1 (¢), P 4 G. a.

\

23.13 Theorem. Let B be a p-block of a p-solvable group. Suppose D is
a defect group of B and b € bl(Ng(D)) is the Brauer correspondent of B.
Then I(B) > I(b) with equality if and only if [(B) = lo(B).

Proof. This theorem can be proved by Fong reduction, Theorem 23.10 and
Corollary 23.11. Since the proof is essentially identical to those of Théorems
15.12 and 23.9, we omit the details. O

23.14 Definition.-We say x € Irr (G) is subnormally p-rational if whenever

S is subnormal in G and 7 € Irr (S) is a constituent of xs, then 7 is p-
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rational. We let S,(G) denote the set of subnormally p-rational irreducible

characters of G.

We now proceed to give Isaacs’ canonical lift of Brauer characters for
p-solvable groups, p # 2. Indeed x — x°is a bijection from S5,(G) onto
IBr,(G). This was originally done in [Is 4]. This theorem is not true for
p = 2, as is evidenced by an elementary abelian 2-group. Indeed, part of
the problem is that alinear character of order two is rational. For example,
Theorem 6.30 of [Is] does not hold for p = 2. In a later paper, Isaacs [Is 5]

does give a canonical lift when p = 2.

23.15 Lemma. Suppose that G/N is a p-group, 8 € Irr (N) is p-rational
and p # 2. Let I = Ig(8). Then

(a) There is a unique p-rational ¥ € Irr (I|6). Furthermore N = 6.

(b) 9 is the unique p-rational constituent of 6%,

(c) If 6° € IBry(N) and Ig(0) = I(6°), then IBr,(G6°) = {(©)°}. |

Proof. Part (a) is Theorem 6.30 of [Is]. Clearly € € Irr(G|f) is p-rational.
If B € Irr (G|6) is p-rational, choose the unique n € Irr (I|f) with n% = B.
Since both 8 and 6 are p-rational, a routine argument yields that 7 is p-

rational. By part (a), 7 =1 and § = 4.

Since (°)n = (¥n)° = 6° is irreducible, $° € IBr,(I|6°). Part (c) now
follows from Clifford’s Theorem 0.8 and Corollary 0.27. O

23.16 Theorem. Suppose G is p-solvable, p # 2. Then
(i) x = x° is a bijection from 5,(G) onto IBr,(G).
(i) If B € Irr (G) is p-rational and 8° € IBrp(G)b, then f € S,(G).

Proof. We argue by induction on |G|. The result is trivial if p { |G|.

Step 1. If L @ H < G, then 8 — 6° is a bijection from §,(L) onto IBr,(L).
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For each 6 € S,(L), every H-conjugate of 8 is in S,(L) and Iz (0) = Iu(6%).

Proof. The first statement follows from the inductive hypothesis as L < G.
For 6 € S,(L) and h € H, (6")° = (6°)* € IBr,(L) and 6" is p-rational. By
the inductive hypothesis, 8% € S,(L). If also h € I(6°), then (6%)° = 6°
and uniqueness in the inductive hypothesis yields that 6" = 6. So Ix(8°) <

It(9). The reverse inclusion is trivial.

Step 2. Suppose that L <« H < G and H/L is a p'-group. If § € S,(L),
then

(i) S,(H|6) =Irr (H|0); and

(i1) x — x° is a bijection from S,(H|6) onto IBr,(H|6°).

Proof. By Step 1, 6° € IB_r,,(L) and Ig(0) = Iy(6°). By Lemma 0.31,
x +— x° is a bijection from Irr (H|6) onto IBr,(H|6°).

We next show that each x € Irr (H|6) is p-rational. Now x° is p-rational
because it is a Brauer character (see discussion following Definition 23.4).
Wrile |G| = n = rp' for integers | > 0, 7 and n, with p { . Whenever
o€ Gal(Qn/Q)), (x7)° = (x°)? = x° and x° € Irr (G|9), as 6 is p-rational.

By the uniqueness in the last pzl.i‘a,gfaph, x° = x. Hence y is p-rational.

~ To show that x € Irr (H|6) is subnormally p-rational, it suffices to show
that whenever M < H, then the irreducible constituents of x as lie in Sp,(M).
By Step 1, every H-conjugate of 6 lies in S,(L). Hence every irreducible
constituent of xpsnp lies in S,(M N L). Since M/M NL = LM/L is a p'-
group, the argument of the last paragraph shows that whenever « € Irr(M)
is a constituent of x s, then a® € IBr,(M) and « is p-rational. The inductive
hypothesis implies that @ € S,(M), as desired. So x € S,(H). Thus
Irr (H|0) = S,(H|P).

Step 3. Suppose that L < H < G and H/L is a p-group. Let € S,(L).
Then

(1) There is a unique 7 € S,(H|0);
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(ii) 7 is the unique p-rational constituent of 8%; and

(iii) IBr,(H|6%) = {r°}.
Proof. By Step 1, Iy(8) = Iy(8°). By Lemma 23.15, 87 has a unique
p-rational constituent 7 € Irr (H) and IBr,(H|8) = {r°}. It suffices to show
7 € Sp(H). To this end, it suffices to show that the irreducible constituents
of Ta ére in S,(M) for all maximal normal subgroups M of H. By Step 1,

it suffices to show that some irreducible constituent of Tan is in Sp(M).

Every irreducible constituent v of fpnnm lies in S,(L N M). The last
paragraph shows some irreducible constituent » of 4™ is p-rational and
v € IBr,(M). By the inductive hypothesis v € S,(M).

First assume that |[H/M| = p, so that H/LN M is a p-group. By Lemma
23.15, 8, 7, and v are the unique p-rational irreducible constituents of v%,
~vH and M| respectively. The lemma also implies that v has a p-rational
constituent ¢€. Then £ is a constituent of v/. By uniqueness, ¢ = 7 and
thus [7ar,v] # 0. Since v € S,,(M),Rve are done when |H/M| = p.

We now assume that H/M is a p'-group. -By Step 2, every irreducible

. constituent of v lies in S,(H). Now H = ML, and v is a constituent of

Oram™ = (GH)M. Hence some irreducible constituent of 87 is in Sp(H).
But 7 is the unique p-rational constituent of 67 and so v € S,(H). This

completes Step 3.

Step 4. x = x° is a bijection from S,(G) onto IBr,(G), i.e. conclusion (a)
of the theorem holds. : ‘

Proof. Since G is p-solvable, we may choose L <I G such that G/L is a p'-
group or p-group. By Step 1, 6 ¥ 6° is a bijection from S,(L) onto IBr,(L).
By Steps 2 and 3, whenever 6 € 5,(L), then x + x° is a bijection from
S,(G|6) onto IBr,(G|6°). Thus x — x° maps S,(G) onto IBr,(G).

Suppose x, 7 € Sp(G) and x° = n°. We may choose § € S,(L) such that
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6° is a constituent of both xg and n]. It follows from uniqueness that y,

n € Sp(G|é). By the last paragrdph X =7.
Step 5. Conclusion

Proof. To complete the proof, we assume that 8 € Irr (G) is p-rational and
B° € IBr,(G). We need to show that § € Sp(G). Choose K < G maximal
such that the irreducible constituents of By lie in Sp(I). We may assume
that I < G. Fix a € §,(K) with # € Irr (Gla).

Let N/IK be a chief factor of G. If p { [N/K]|, then every irreducible
constituent of a®v is in Sp(N). Then some (and hence all) irreducible con-

stituents of Ay are subnormally p-rational, contradicting the choice of K.

Hence N/I is a p-group.

Choose v € Irr (N|a) such that [8y,7] # 0. Then 7 & Sp(N). By Step 3,
a™ has a unique p-rational irreducible constituent and that lies in S (N)

Hence « is not p-rational.

Let I = Ig(y) and T = {g € @ | 79 is Galois-conjugate to v}. Let
Y € Irr(I|y) with 1_/)G = f. Since ($9)° = (7)) = g° ¢ IBr,(G),
we have that ¢° € IBr,(I) and (47)° € IBr,(T). By Proposition 22.2,
Q(»T) = Q(B) and thus ¥ T is prational. If 7' < G, the inductive hypothesis

implies that %7 € S§,(T). But then ¥ € Sp(N), a contradiction. Hence
T = G. By Proposition 22.2, I < G.

Now let S = {g € G | v? = 9 for some o € Gal(@,,/@r)}. Recall
|G| = n = rp* with ptr. Then I < § < T and PS5 € Irr (Sly). Let
7 € Gal(Q./Q,). Since (°)Y = B is p-rational, ()¢ =S =g
Now 4™ and v are constituents of f and thus G-conjugate. Hence v™ and
7y are S-conjugate. Thus ()" € Irr (S|y). Since ()N = = (45, it
follows from uniqueness in Clifford’s Theorem 0.8 that ()" = 5. Hence

¥ is p-rational. Since ((¥*)9)° € IBr,(G), indeed (¥°)° € IBr,(5). If § <

"G, the inductive hypothesis implies that %5 € S,(8), whence v € S,(N), a
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contradiction. Thus S = G.

Now I 4 G and %° € IBr, (1) because ($°)¢ = f € IBr,(G). We claim
that 1% is G-invariant. If ¢ € G, then 9 € Irr (I|y9) and (49)¢ = . On
the other hand, y? = 4° for some o € Gal (Qn/Q,.) Then I = Ig(y9)
and ¥? € Irr (I]y9). Since ()¢ = B° = B, the uniqueness in Clifford’s
Theorem 0.8 yields that 9 = . Then (¢°)? = (¢°)? = ¥° because every

Brauer character is p-rational. Hence 1° is G-invariant.

Now I 94 G, ¢° € IBr,(I) is G-invariant, and ($°)¢ = f° € IBr,(G). If
I < G, we may apply Step 1 to conclude there exists a G-invariant n € Irr (I)
such that 7° = 4°. Also 7% is irreducible because (n9)° = ° € IBr,(G).
We have both 5 € Irr (I) is G-invariant and 7€ € Irr(@). By Frobenius
reciprocity, 1 = %, = [9°;,9] = |G : I|. Thus I = G and 7 is
G-invariant. Because § is p-rational and Sy = ey for an integer €, v is

p-ratic;nal. This contradiction completes the proof. O

One can derive from Theorem 23.16 and its proof a number of corollaries
about S,-characters, p # 2. For example, Steps 1 to 3 are valid and the

Clifford correspondence works as one would hope.

We can now remove the hypothesis that p { (1) for Theorems 23.7 and
23.10, at least for p # 2, by using subnormally p-rational lifts of Brauer

characters instead of p'-special lifts. *Observe that when p # 2, Theorem

156.9 (v) may be stated in terms of S,-characters instead of p-rational char-
acters. Otherwise, the details of the proof, which we leave to the reader,
are identical. An alternative method to remove the hypothesis p { x(1) from
Theorem 23.7 (and p # 2 below) is the use of projective representations over
fields of characteristic p. ’

23.17 Theorem. Suppose that G is p-solvable, that L < G and P/L €
Sylp(G/L). If u € IBr,(L) is invariant in P, if p # 2 and H/L = Ng(P),

then

1) lo(é[/,t) = lo(H|p); and

-
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(1) U(G|p) > I(H|p) with equality if and only if (G|p) = I,(G|w).

Again p # 2 is not really necessary. Isaacs (Is 5] developed a lift that
works for all p and is the same lift (when p # 2) as Theorem 23.16. This lift
is slightly more tricky. While Clifford correspondence works smoothly for
Sp-characters, when p # 2, it does not work quite as expected when p = 2.
We will give a brief description of Isaacs’ lift, but first mention one result
related to Theorem 23.17 (i). The proof is essentially the same, but one

must extract a little more information from Theorem 15.9. A proof is given

in [Wo 7).

23.18 Theorem. Let G be p-solvable and g-solvable for not necessarily
distinct primes p and q. Suppose that L <4 G, Q/L € Syl,(G/L) and
H/L = NG/L(Q/L). If p € IBr,(L) is invariant in @, then

H{x € Bry(Glp) | g 4 x(1)/(W}] = [{ € BBr,(Hlp) | ¢ 1(1)/n(1)}].

Let G be m-separable. Isaacs [Is 6] has shown there is a uniquely defined

subset B (G) C Irr (G) such that the following hold whenever N <1 G:
(i) If x € Bx(G), every irréddcible constituent of x v is in B (IV);
(ii) If § € Bo(N) and G/N is a m-group, then B,(G|6) = Irr (G|6);
(ili) If € BL(N) and G/N is a 7r'—g1*<)u§, then there is a unique ¥ €
Bx(Gl6). Also 1 = 1€ for the unique 77 € B,(I5(6)|6) and nn =0,
(iv) Each x € B4(G) is “r'-rational”;
(V) Xo(G) = {x € B,(G) ' x(1) is a w-number};
(vi) If 2 € m, then B(G) = S(G); and

(vii) If = = {p}, then x = x" is a bijection from B, (G) onto IBr,(G).

The definitions of 7-rational and S,(G) are the obvious generalizations
of Definitions 23.4 and 23.14. The notion of B,-characters has also been
used to develop Brauer theorems in “characteristic #”. For this, we refer

the reader to Isaacs [Is 6, 8], Slattery [S1 1, 2] and Wolf [Wo 6, 7).
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